首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Bagasse fly ash (BFA, a sugar industrial waste) was used as low-cost adsorbent for the uptake of arsenate and arsenite species from water. The optimum conditions for the removal of both species of arsenic were as follows: pH 7.0, concentration 50.0 μg/L, contact time 50.0 min, adsorbent dose 3.0 g/L, and temperature 20.0 °C, with 95.0 and 89.5 % removal of arsenate and arsenite, respectively. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich adsorption isotherms were used to analyze the results. The results of these models indicated single-layer uniform adsorption on heterogeneous surface. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, were also calculated. At 20.0 to 30.0 °C, the values of ΔG° lie in the range of ?4,722.75 to ?4,878.82 and ?4,308.80 to ?4,451.73 while the values of ΔH° and ΔS° were ?149.90 and ?121.07, and 15.61 and 14.29 for arsenate and arsenite, respectively, indicating that adsorption is spontaneous and exothermic. Pseudo-first-order kinetics was followed. In column experiments, the adsorption decreased as the flow rate increased with the maximum removal of 98.9 and 95.6 % for arsenate and arsenite, respectively. The bed depth service time and Yoon and Nelson models were used to analyze the experimental data. The adsorption capacity (N o) of BFA on column was 3.65 and 2.98 mg/cm3 for arsenate and arsenite, respectively. The developed system for the removal of arsenate and arsenite species is economic, rapid, and capable of working under natural conditions. It may be used for the removal of arsenic species from any contaminated water resources.  相似文献   

2.
This paper highlights the utility of riverbed sand (RS) for the treatment of Ni(II) from aqueous solutions. For enhancement of removal efficiency, RS was modified by simple methods. Raw and modified sands were characterized by scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FTIR) to investigate the effect of modifying the surface of RS. For optimization of various important process parameters, batch mode experiments were conducted by choosing specific parameters such as pH (4.0–8.0), adsorbent dose (1.0–2.0 g), and metal ion concentrations (5–15 mg/L). Removal efficiency decreased from 68.76 to 54.09 % by increasing the concentration of Ni(II) in solution from 5 to 15 mg/L. Removal was found to be highly dependent on pH of aqueous solutions and maximum removal was achieved at pH 8.0. The process of removal follows first-order kinetics, and the value of rate constant was found to be 0.048 min?1 at 5 mg/L and 25 °C. Value of intraparticle diffusion rate constant (k id) was found to be 0.021 mg/g min1/2 at 25 °C. Removal of Ni(II) decreased by increasing temperature which confirms exothermic nature of this system. For equilibrium studies, adsorption data was analyzed by Freundlich and Langmuir models. Thermodynamic studies for the present process were performed by determining the values of ΔG°, ΔH°, and ΔS°. Negative value of ?H° further confirms the exothermic nature of the removal process. The results of the present investigation indicate that modified riverbed sand (MRS) has high potential for the removal of Ni(II) from aqueous solutions, and resultant data can serve as baseline data for designing treatment plants at industrial scale.  相似文献   

3.
Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L?1) for an initial concentration of 1,000 μg L?1. Maximum capacity at pH 4 and 17 % iron was 18.12–40.82 mg of arsenic/g of D-Fe and at pH 4 and 10 % iron was 18.48–29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10 % and 17 % iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.  相似文献   

4.
The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0–5.5 h contact time at pH 6.0–7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85–98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water.  相似文献   

5.
To evaluate the biosorption efficacy of submerged aquatic plant Hydrilla verticilata for arsenic uptake from drinking water. H. verticillata, a submerged aquatic plant was utilized successfully for arsenic uptake from aqueous solution. Batch studies with various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature were carried out. Data were utilized to plot Lagergren graph along with pseudo-second-order graphs for kinetic studies to estimate the removal efficacy and to determine the nature of reaction. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) have been performed for characterization of metals on biomass. The study showed 96.35 % maximum absorption of arsenic by H. verticilata at initial concentration of 100 ppb with 0.5 g of biomass/100 ml for 5 h contact time at pH?6.0 with 150 rpm agitation rate. Data followed Langmuir isotherm showing sorption to be monolayer on homogeneous surface of biosorbent. The negative values of ΔG° indicated spontaneous nature; whereas ΔH° indicates exothermic nature of system and negative value of ?S° entropy change correspond to a decrease in the degree of freedom to the adsorbed species followed by pseudo-second-order adsorption kinetics. FTIR and SEM results showed apparent changes in functional group regions after metal chelation and the changes in surface morphology of biosorbent. This is a comparatively more effective, economic, easily available, and environmentally safe source for arsenic uptake from solution due to its high biosorption efficacy than other biosorbents already used.  相似文献   

6.
This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172?±?176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.  相似文献   

7.
In this present study, the biosorption of Cr(VI) and Zn(II) ions from synthetic aqueous solution on defatted J atropha oil cake (DJOC) was investigated. The effect of various process parameters such as the initial pH, adsorbent dosage, initial metal ion concentration and contact time has been studied in batch-stirred experiments. Maximum removal of Cr(VI) and Zn(II) ions in aqueous solution was observed at pH 2.0 and pH. 5.0, respectively. The removal efficiency of Cr(VI) and Zn(II) ions from the aqueous solution was found to be 72.56 and 79.81 %, respectively, for initial metal ion concentration of 500 mg/L at 6 g/L dosage concentration. The biosorbent was characterized by Fourier transform infrared, scanning electron microscopy and zero point charge. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models and the best fit is found to be with the Freundlich isotherm for both Cr(VI) and Zn(II) metal ions. The kinetic data obtained at different metal ion concentration have been analysed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and were found to follow the pseudo-second-order kinetic model. The values of mass transfer diffusion coefficients (D e) were determined by Boyd model and compared with literature values. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were analysed using the equilibrium constant values (K e) obtained from experimental data at different temperatures. The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature. The results indicate that DJOC was shown to be a promising adsorbent for the removal of Cr(VI) and Zn(II) ions from aqueous solution.  相似文献   

8.
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)–CaCl2 (300 mg/L) coprecipitation agent could remove more than 93 % arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH–NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.  相似文献   

9.
The present work investigates the potential use of metal hydroxides sludge (MHS) generated from hot dipping galvanizing plant for adsorption of Congo Red and Naphthol Green B dyes from aqueous solutions. Characterization of MHS included infrared and X-ray fluorescence analysis. The effect of shaking time, initial dye concentration, temperature, adsorbent dosage and pH has been investigated. The results of adsorption experiments indicate that the maximum capacity of Congo Red and Naphthol Green B dyes at equilibrium (q e) and percentage of removal at pH 6 are 40 mg/g, 93 %, and 10 mg/g, 52 %, respectively. Some kinetic models were used to illustrate the adsorption process of Congo Red and Naphthol Green B dyes using MHS waste. Thermodynamic parameters such as (ΔG, ΔS, and ΔH) were also determined.  相似文献   

10.
Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0?±?10.0 mg g?1 of As(V) and 142.9?±?7.2 mg g?1 of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.  相似文献   

11.
An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01?±?3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose–response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.  相似文献   

12.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

13.
Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.  相似文献   

14.
15.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

16.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

17.
This work presents the structural and adsorption properties of the CaCO3 ?-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20 % was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R 2?>?0.98) than Freundlich (R 2?<?0.97).The correlation coefficient values (p?<?0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.  相似文献   

18.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

19.
In this study, uranium(VI) was successfully removed from aqueous solutions using heat-treated carbon microspheres based on a batch adsorption technique. Influence of the parameters, such as solution pH, contact time, initial uranium(VI) concentration, and temperature on the removal efficiency have been investigated in detail. The results reveal that the maximum adsorption capacity of the heat-treated carbon microspheres toward uranium(VI) is 92.08 mg g?1, displaying a high efficiency for the removal of uranium(VI) from aqueous solution. The experimental data are analyzed using sorption kinetic models. It is revealed that the process obey the pseudo-second-order kinetic model, the determining step might be chemical sorption. The thermodynamic parameters, such as ΔH°, ΔS°, and ΔG° show that the process is endothermic and spontaneous. This work provides an efficient, fast, and convenient approach for the removal of uranium(VI) from aqueous solutions.  相似文献   

20.
In this study, recycled Ni smelter slag has been used as a reactive medium for arsenic (As) removal from aqueous solutions. The results of the study showed that 10.16–11.43-cm long columns containing 451–550 g of slag operated for at least 65 days were able to remove 99–100 % As species from continuously flowing contaminated water at an initial As concentration of 10 mg/L. The removal capacities were found to be 1.039 to 1.054 mg As per g of slag. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy data also showed that electrostatic attraction and oxidation–reduction reactions between As species and mixed iron oxides present in the slag were the main mechanisms for the removal of arsenic from aqueous solutions. Theoretical multiplet analysis of XPS data revealed that the amount of goethite in the slag increased from 22 to 60 % during arsenic removal by adsorption and the percentage of magnetite decreased from 50 to 40 %. These changes indicate that redox-mediated reactions occurred as part of the As(V) removal process. Raman spectroscopy studies confirmed that, in addition to surface reactions, internal interactions between the slag and arsenic also occurred. The findings of the study suggest that recycled Ni smelter slag could be an effective low-cost reactive medium for a subsurface remediation system, such as a permeable reactive barrier. Recycling of waste material (slag) for the removal of another waste (arsenic) can significantly reduce the environmental footprint of metallurgical operations and hence contribute to sustainable development. Such recycling also decreases slag disposal costs and eliminates the need to purchase commercial reactive material or obtain expensive natural material for remediation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号