首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010–2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010–2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7–5.2 and 1.9–9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9–7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper’s methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.  相似文献   

2.
A methodology for regional application of forest simulation models has been developed as part of an assessment of possible climate change impacts in the Federal state of Brandenburg (Germany). Here we report on the application of a forest gap model to analyse the impacts of climate change on species composition and productivity of natural and managed forests in Brandenburg using a statistical method for the development of climate scenarios. The forest model was linked to a GIS that includes soil and groundwater table maps, as well as gridded climate data with a resolution of 10 × 10 km and simulated a steady-state species composition which was classified into forest types based on the biomass distribution between species. Different climate scenarios were used to assess the sensitivity of species composition to climate change. The simulated forest distribution patterns for current climate were compared with a map of Potential Natural Vegetation (PNV) of Brandenburg.In order to analyse the possible consequences of climate change on forest management, we used forest inventory data to initialize the model with representative forest stands. Simulation experiments with two different management strategies indicated how forest management could respond to the projected impacts of climate change. The combination of regional analysis of natural forest dynamics under climate change with simulation experiments for managed forests outlines possible trends for the forest resources. The implications of the results are discussed, emphasizing the regional differences in environmental risks and the adaptation potentials of forestry in Brandenburg.  相似文献   

3.
Concerning the stabilization of greenhouse gases, the UNFCCC prescribes measures to anticipate, prevent, or minimize the causes of climate change and mitigate their adverse effects. Such measures should be cost-effective and scientific uncertainty should not be used as a reason for postponing them. However, in the light of uncertainty about climate sensitivity and other underlying parameters, it is difficult to assess the importance of different technologies in achieving robust long-term climate risk mitigation. One example currently debated in this context is biomass energy, which can be used to produce both carbon-neutral energy carriers, e.g., electricity, and at the same time offer a permanent CO2 sink by capturing carbon from the biomass at the conversion facility and permanently storing it. We use the GGI Scenario Database IIASA [3] as a point of departure for deriving optimal technology portfolios across different socioeconomic scenarios for a range of stabilization targets, focusing, in particular, on new, low-emission scenarios. More precisely, the dynamics underlying technology adoption and operational decisions are analyzed in a real options model, the output of which then informs the portfolio optimization. In this way, we determine the importance of different energy technologies in meeting specific stabilization targets under different circumstances (i.e., under different socioeconomic scenarios), providing valuable insight to policymakers about the incentive mechanisms needed to achieve robust long-term climate risk mitigation.  相似文献   

4.
Assessment of land use and climate change impacts on the hydrological cycle is important for basin scale water resources management. This study aims to investigate the potential impacts of land use and climate change on the hydrology of the Bago River Basin in Myanmar. Two scenarios from the representative concentration pathways (RCPs): RCP4.5 and RCP8.5 recommended by the Intergovernmental Panel on Climate Change, Fifth Assessment Report (IPCC AR5) were used to project the future climate of 2020s, 2050s, and 2080s. Six general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were selected to project the future climate in the basin. An increase of average temperature in the range of 0.7 to 1.5 °C and 0.9 to 2.7 °C was observed under RCP 4.5 and RCP 8.5, respectively, in future periods. Similarly, average annual precipitation shows a distinct increase in all three periods with the highest increase in 2050s. A well calibrated and validated Soil and Water Assessment Tool (SWAT) was used to simulate the land use and climate change impacts on future stream flows in the basin. It is observed that the impact of climate change on stream flow is higher than the land use change in the near future. The combined impacts of land use and climate change can increase the annual stream flow up to 68 % in the near future. The findings of this study would be beneficial to improve land and water management decisions and in formulating adaptation strategies to reduce the negative impacts, and harness the positive impacts of land use and climate change in the Bago River Basin.  相似文献   

5.
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In December 1997, the United Nations Framework Convention on Climate Change (FCCC) adopted the Kyoto Protocol. This paper describes a framework that models the climatic implications of this international agreement, using Monte Carlo simulations and the preliminary Intergovernmental Panel on Climate Change emissions scenarios (SRES). Emissions scenarios (including intervention scenarios), climate sensitivity, and terrestrial carbon sink are the key sampled model parameters. This framework gives prior probability distributions to these parameters and, using a simple climate model, posterior distributions of global temperature change are determined for the future. Our exercise showed that the Kyoto Protocol's effectiveness will be mostly dependent upon which SRES world evolves. In some worlds the Protocol decreases the warming considerably but in others it is almost irrelevant. We exemplified this approach with a current FCCC issue, namely “hot air”. This modelling framework provides a probabilistic assessment of climate policies, which can be useful for decision-makers involved in global climate change management. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.  相似文献   

8.

Winter alpine tourism has been repeatedly identified as one of the economic sectors most at risk from climate change in Switzerland. However, all of the costs that have been estimated so far for the Swiss tourism sector are, to some extent, misleading as they do not, or only partially, incorporate adaptation possibilities and general equilibrium effects. We attempt to fill this gap using a computable general equilibrium model that is specifically designed for the purposes of this research. Our modeling efforts first consist in creating a tourism sector with a part of it being dependent on snow. We also carefully model the snowmaking technology. Using climate change scenarios on future snow cover, we analyze their impacts on the Swiss ski industry. We find welfare effects for the Swiss economy ranging from − 23 to 113 million CHF in 2050. This range arises from the use of various assumptions concerning adaptation possibilities. We also show that geographical substitutions between international ski destinations have large positive effects for Switzerland. From a more general perspective, our results exemplify the risks of estimating the consequences of climate change based only on domestic impacts of climate change with no adaptation being implemented.

  相似文献   

9.
The Intergovernmental Panel on Climate Change (IPCC) reports an acceleration of the global mean sea-level rise (MSLR) in the twentieth century in response to global climate change. If this acceleration remains constant, then some coastal areas are most likely to be inundated by the year 2100. The ability to identify the differential vulnerability of coastlines to future inundation hazards as result of global climate change is necessary for timely actions to be taken. Yildiz et al. (Journal of Mapping, 17, 1-75, 2003) reported that the local MSLR in the city of Izmir rose at a rate of 6.8 +/- 0.9 mm year(-1) between 1984 and 2002. In this study, the spatial distribution of the coastal inundation hazards of Izmir region was determined using not only land-use and land-cover (LULC) types derived from the maximum likelihood classification of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multi-spectral image set but also the classification of the digital elevation model (DEM) acquired by the shuttle radar topography mission (SRTM). Coastal areas with elevations of 2 and 5 m above mean sea-level vulnerable to inundation were found to cover 2.1 and 3.7% of the study region (6,107 km(2)), respectively. Our findings revealed that Menemen plain along Gediz river, and the settlements of Karsiyaka, Alacati, Aliaga, Candarli and Selcuk are at high risk in order of decreasing vulnerability to permanent and episodic inundation by 2100 under the high MSLR scenarios of 20 to 50 mm year(-1).  相似文献   

10.
This study aimed to assess the impacts of climate change on residential energy consumption in Dhaka city of Bangladesh. The monthly electricity consumption data for the period 2011–2014 and long-term climate variables namely monthly rainfall and temperature records (1961–2010) were used in the study. An ensemble of six global circulation models (GCMs) of coupled model intercomparison project phase 5 (CMIP5) namely, BCCCSM1-1, CanESM2, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, and NorESM1-M under four representative concentration pathway (RCP) scenarios were used to project future changes in rainfall and temperature. The regression models describing the relationship between historical energy consumption and climate variables were developed to project future changes in energy consumptions. The results revealed that daily energy consumption in Dhaka city increases in the range of 6.46–11.97 and 2.37–6.25 MkWh at 95% level of confidence for every increase of temperature by 1 °C and daily average rainfall by 1 mm, respectively. This study concluded that daily total residential energy demand and peak demand in Dhaka city can increase up to 5.9–15.6 and 5.1–16.7%, respectively, by the end of this century under different climate change scenarios.  相似文献   

11.
This paper presents simulations of climate change impacts on water quality in the upstream portion of the Cau River Basin in the North of Vietnam. The integrated modeling system GIBSI was used to simulate hydrological processes, pollutant and sediment wash-off in the river basin, and pollutant transport and transformation in the river network. Three projections for climate change based on emission scenarios B1, B2, and A2 of IPCC Special Report on Emission Scenarios (SRES) were considered. By assuming that the input pollution sources and watershed configuration were constant, based on 2008 data, water quality in the river network was simulated up to the terminal year 2050. For each climate change scenario, patterns of precipitation in wet and dry year were considered. The change in annual and monthly trends for dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonium ions (NH4+) load and concentration for different portions of the watershed have been analyzed. The results of these simulations show that climate change has more impact on changing the seasonal water quality parameters than on altering the average annual load of the pollutants. The percent change and change pattern in water quality parameters are different for wet and dry year, and the changes in wet year are smaller than those in dry year.  相似文献   

12.
This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5°?×?0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001–2010, 2041–2050, and 2091–2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p?p?p?p?相似文献   

13.
Current political discussions and developments indicate the importance and urgency of incorporating climate change considerations into EIA processes. The recent revision of the EU Directive 2014/52/EU on Environmental Impact Assessment (EIA) requires changes in the EIA practice of the EU member states. This paper investigates the extent to which the Environmental Impact Assessment (EIA) can contribute to an early consideration of climate change consequences in planning processes. In particular the roles of different actors in order to incorporate climate change impacts and adaptation into project planning subject to EIA at the appropriate levels are a core topic. Semi-structured expert interviews were carried out with representatives of the main infrastructure companies and institutions responsible in these sectors in Austria, which have to carry out EIA regularly. In a second step expert interviews were conducted with EIA assessors and EIA authorities in Austria and Germany, in order to examine the extent to which climate-based changes are already considered in EIA processes. This paper aims to discuss the different perspectives in the current EIA practice with regard to integrating climate change impacts as well as barriers and solutions identified by the groups of actors involved, namely project developers, environmental competent authorities and consultants (EIA assessors/practitioners). The interviews show that different groups of actors consider the topic to different degrees. Downscaling of climate change scenarios is in this context both, a critical issue with regards to availability of data and costs. Furthermore, assistance for the interpretation of relevant impacts, to be deducted from climate change scenarios, on the specific environmental issues in the area is needed. The main barriers identified by the EIA experts therefore include a lack of data as well as general uncertainty as to how far climate change should be considered in the process without reliable data but in the presence of knowledge about possible consequences at an abstract level. A joint strategy on how to cope with uncertain prognoses about main impacts on environmental issues for areas without reliable data requires a discussion and cooperation between EIA consultants and environmental authorities.  相似文献   

14.
The Prairie Adaptation Research Collaborative (PARC) has implemented an Internet Map Server (IMS) at the PARC web site (www.parc.ca) to 1) disseminate the geo-referenced results of PARC sponsored research on climate change impacts and adaptation, and 2) address data, information and knowledge management within the PARC network of researchers and partners. PARC facilitates interdisciplinary research on adaptation to the impacts of climate change in the Canadian Prairie Provinces. The web site is intended as a platform for sharing information and encouraging discussion of climate change impacts and adaptation. The IMS enables scientists and stakeholders to apply simple climate change scenarios to geo-referenced biophysical and social data, and dynamically create maps that display the geographic distribution of potential impacts of climate change. With a limited capacity for spatial analysis, most geo-processing and the climate impact modeling is done offline within a GIS environment. The IMS will serve the output from climate impact models, such that the model results can be customized by the web site user and be most readily applied to the planning and analysis of adaptation strategies.  相似文献   

15.
A space of “not-implausible” scenarios for Egypt's future under climate change is defined along two dimensions. One depicts representative climate change and climate variability scenarios that span the realm of possibility. Some would not be very threatening. Others portend dramatic reductions in average flows into Lake Nassar and associated increases in the likelihood of year to year shortfalls below critical coping thresholds; these would be extremely troublesome, especially if they were cast in the context of increased political instability across the entire Nile Basin. Still others depict futures along which relatively routine and relatively inexpensive adaptation might be anticipated. The ability to adapt to change and to cope with more severe extremes would, however, be linked inexorably to the second set of social–political–economic scenarios. The second dimension, defined as “anthropogenic” social/economic/political scenarios describe the holistic environment within which the determinants of adaptive capacity for water management, agriculture, and coastal zone management must be assessed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This paper presents an integrated and dynamic model for the management of the uplands of the Hill Tracts of Chittagong to predict food security and environmental loading for gradual transition of shifting agriculture land into horticulture crops and teak plantation, and crop land into tobacco cultivation. Food security status for gradual transmission of shifting agriculture land into horticulture crops and teak plantation, and crop land into tobacco cultivation is the best option for food security, but this causes the highest environmental loading resulting from tobacco cultivation. Considering both food security and environmental degradation in terms of ecological footprint, the best option is gradual transition of shifting agriculture land into horticulture crops which provides moderate increase in the food security with a relatively lower environmental degradation in terms of ecological footprint. Crop growth model InfoCrop was used to predict the climate change impacts on rice and maize production in the uplands of the Hill Tracts of Chittagong. Climate change impacts on the yields of rice and maize of three treatments of temperature, carbon dioxide and rainfall change (+0 °C, +0 ppm and +0 % rainfall), (+2 °C, +50 ppm and 20 % rainfall) and (+2 °C, +100 ppm and 30 % rainfall) were assessed. The yield of rice decreases for treatment 2, but it increases for treatment 3. The yield of maize increases for treatments 2 and 3 since maize is a C4 plant. There is almost no change in food security at upazila (sub-district) level for the historical climate change scenario, but there is small change in the food security at upazila levels for IPCC climate change scenario.  相似文献   

17.
Strategies to conserve biodiversity need to include the monitoring, modelling, adaptation and regulation of the composition of the atmosphere. Atmospheric issues include climate variability and extremes; climate change; stratospheric ozone depletion; acid deposition; photochemical pollution; suspended particulate matter; and hazardous air pollutants. Coarse filter and fine filter approaches have been used to understand the complexity of the interactions between the atmosphere and biodiversity. In the first approach, climate-based models, using GIS technology, helped create future biodiversity scenarios under a 2 × CO2 atmosphere. In the second approach, the SI/MAB forest biodiversity monitoring protocols helped calibrate the climate-forest biodiversity baseline and, as global diagnostics, helped identify where the biodiversity was in equilibrium with the present climate. Forest climate monitoring, an enhancing protocol, was used in a co-location approach to define the thermal buffering capacity of forest ecosystems and their ability to reduce and ameliorate global climate variability, extremes and change.  相似文献   

18.
One of the main goals in pursuing sustainable development is to provide universal access to modern energy services, notably through the use of off-grid renewable energy technologies. To date, integrated assessment models (IAMs) poorly address energy access targets. In the context of research dedicated to energy scenarios and climate change mitigation in Africa, we attempt to advance the representation of energy access in one such IAM by using GIS data. In a case study for Ethiopia with the TIAM-ECN model, we demonstrate that by enriching an IAM with information derived from GIS databases, insights are obtained that better capture the dynamics of energy access developments, in comparison to conventional IAM analysis of energy technology deployment pathways. When duly accounting for the geographical spread in demography and technology costs in a developing country, we find that many people may gain access to electricity in remote areas thanks to the availability of affordable off-grid power production options that render expensive grid extensions unnecessary. This effect is not explicitly accounted for in most traditional IAMs. By the middle of the century, off-grid technologies could provide affordable electricity to 70% of the Ethiopian population, based almost entirely on renewable sources such as wind, solar and hydropower.  相似文献   

19.
Stream discharge of a watershed is affected and altered by climate and landcover changes. These effects vary depending on the magnitude and interaction of the changes, and need to be understood so that local water resource availability can be evaluated and socioeconomic development within a watershed be pursued and managed in a way sustainable with the local water resources. In this study, the landcover and climate change effects on stream discharge from the Jacks Fork River basin in the Ozark Highlands of the south-central United States were examined in three phases: site observation and data collection, model calibration and simulation, and model experiment and analysis. Major results of the study show that climate fluctuations between wet and dry extremes resulted in the same change of the basin discharge regardless of the landcover condition in the basin. On the other hand, under a specified climate condition landcover change from a grassland basin to a fully forested basin only resulted in about one half of the discharge change caused by the climate variation. Furthermore, when landcover change occurred simultaneously with climate variation, the basin discharge change amplified significantly and became larger than the combined discharge changes caused by the climate and landcover change alone, a result indicating a synergistic effect of landcover and climate change on basin discharge variability. Agricultural Research Division, University of Nebraska-Lincoln, Contribution Number 13437.Qi Hu: Corresponding author: Dr. Qi Hu, Climate and Bio-Atmospheric Sciences Group, School of Natural Resource Sciences, 237 L.W. Chase Hall, University of Nebraska-Lincoln, Lincoln, NE 68583-0728, USA. E-mail: qhu2@unl.edu.  相似文献   

20.
Climatic change will result in great changes in vegetation. In this paper, a biogeographical model, the BIOME1, was used to predict potential vegetation distribution in China under climate change. Firstly, the BIOME1 was validated according to the climate–vegetation relationships in China. Kappa statistics showed that the validated BIOME1 was able to capture the geographical patterns of vegetation more accurately. Then, the validated BIOME1 was used to predict the distribution of vegetation of China under two climatic scenarios produced by a Regional Circulation Model, RegCM2/CN. The simulation results showed obvious northward shifts of the boreal, temperate deciduous and evergreen and tropical forests, a large expansion of tropical dry forest/savanna and reduction of tundra on the Tibetan Plateau. Three vulnerable regions sensitive to climate changes are pointed out, i.e., Northern China, the Tibetan Plateau and Southwestern China (mainly Hengduan Mountains in Yunnan Province and west of Sichuan Province). In recent decades, China has experienced dramatic industrialization and population growth, which exert strong pressure on the environment of China. The consequences of climate changes warrant more attention for maintaining a sustainable environment for China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号