首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory experiment was conducted to test whether anti-predator responses could be induced in the green mussel, Perna viridis, on exposure to waterborne cues from two predators, the muricid gastropod, Thais clavigera, and the portunid crab, Thalamita danae, and from damaged conspecifics. There were five treatments in this study. Aquaria of two treatments housed either Thalamita danae or Thais clavigera. Another three treatments housed only intact mussels, broken and intact mussels, or no mussels. No significant differences were found among these five treatments in final shell weight and tissue dry weight. Induced defensive responses were predator-specific. Experimental mussels exposed to waterborne cues of T. clavigera had a higher percentage increase in shell length, height and width, whereas those exposed to waterborne cues of T. danae had a higher percentage increase in shell width and height. Mussels raised in the presence of crabs developed thicker shell at the umbo and lip margin, whereas mussels raised in the presence of gastropods had thicker shell lip. Predator preference for mussels from the control group and for those pre-exposed to waterborne cues of either of the predators was studied. T. clavigera preferentially selected mussels from the control group, whereas no prey preference was found for T. danae, although shell breaking time for mussels exposed to a crab was longer than that for the control. While the present results should be viewed with caution in the absence of a dietary control, this was the first time that prey handling was shown to be affected by defensive changes in the morphology of mussels.Communicated by T. Ikeda, Hakodate  相似文献   

2.
Smee DL  Weissburg MJ 《Ecology》2006,87(6):1587-1598
The lethal and nonlethal impacts of predators in marine systems are often mediated via reciprocal detection of waterborne chemical signals between consumers and prey. Local flow environments can enhance or impair the chemoreception ability of consumers, but the effect of hydrodynamics on detection of predation risk by prey has not been investigated. Using clams as our model organism, we investigated two specific questions: (1) Can clams decrease their mortality by responding to predators? (2) Do fluid forces affect the ability of clams to detect approaching predators? Previous research has documented a decrease in clam feeding (pumping) in response to a neighboring predator. We determined the benefits of this behavior to survivorship by placing clams in the field with knobbed whelk or blue crab predators caged nearby and compared mortality between these clams and clams near a cage-only control. Significantly more clams survived in areas containing a caged predator, suggesting that predator-induced alterations in feeding reduce clam mortality in the field. We ascertained the effect of fluid forces on clam perception of predators in a laboratory flume by comparing the feeding (pumping) behavior of clams in response to crabs and whelks in flows of 3 and 11 cm/s. Clams pumped significantly less in the presence of predators, but their reaction to blue crabs diminished in the higher velocity flow, while their response to whelks remained constant in both flows. Thus, clam reactive distance to blue crabs was affected by fluid forces, but hydrodynamic effects on clam perceptive distance was predator specific. After predators were removed, clams exposed to whelks took significantly longer to resume feeding than those exposed to blue crabs. Our results suggest that prey perception of predators can be altered by physical forces. Prey detection of predators is the underlying mechanism for trait-mediated indirect interactions (TMIIs), and recent research has documented the importance of TMIIs to community structure. Since physical forces can influence prey perception, the prevalence of TMIIs in communities may, in part, be related to the sensory ability of prey, physical forces in the environment that impact sensory performance, and the type of predator detected.  相似文献   

3.
The non-indigenous green crab (Carcinus maenas) is an important predator on bivalve wild beds in coastal areas worldwide. This study explored size-dependent green crab prey preference on American oysters (Crassostrea virginica), blue mussels (Mytilus edulis), and soft-shell clams (Mya arenaria) in a productive coastal system of Atlantic Canada. Using two sizes of prey and three different experimental manipulations, small, medium, and large green crabs were given a choice among these three bivalves, and their daily feeding rates were monitored over the course of 3 days. For both prey sizes, green crabs showed an early feeding preference for soft-shell clams and, only as they declined in numbers, a switch toward mussels and subsequently toward oysters. We found that such changes in the timing (order) of prey preference are related to prey differences in shell thickness, a fairly reliable indicator of prey shell strength.  相似文献   

4.
Wave action is known to influence the abundance and distribution of intertidal organisms. Wave action will also determine the duration and suitability of various foraging windows (high-tide and low-tide, day and night) for predation and can also affect predator behaviour, both directly by impeding prey handling and indirectly by influencing prey abundance. It remains uncertain whether semi-terrestrial mobile predators such as crabs which can access intertidal prey during emersion when the effects of wave action are minimal, are influenced by exposure. Here, we assessed the effect of wave action on the abundance and population structure (size and gender) of the semi-terrestrial intertidal crab Pachygrapsus marmoratus on rocky shores in Portugal. The activity of P. marmoratus with the tidal cycle on sheltered and exposed shores was established using baited pots at high-tide to examine whether there was activity during intertidal immersion and by low-tide searches. Because prey abundance varies along a wave exposure gradient on most Portuguese shores and because morphology of crab chelipeds are known to be related to diet composition, we further tested the hypothesis that predator stomach contents reflected differences in prey abundance along the horizontal gradient in wave exposure and that this would be correlated with the crab cheliped morphology. Thus, we examined phenotypic variation in P. marmoratus chelipeds across shores of differing exposure to wave action. P. marmoratus was only active during low-tide. Patterns of abundance and population structure of crabs did not vary with exposure to wave action. Stomach contents, however, varied significantly between shores of differing exposure with a higher consumption of hard-shelled prey (mussels) on exposed locations, where this type of prey is more abundant, and a higher consumption of barnacles on sheltered shores. Multivariate geometric analysis of crab claws showed that claws were significantly larger on exposed shores. There was a significant correlation between animals with larger claws and the abundance of mussels in their stomach. Variation in cheliped size may have resulted from differing food availability on sheltered and exposed shores.  相似文献   

5.
Improvements in stocking strategy and management could increase the yield of mussels that are on-grown from harvested wild seed mussel resources and thereby enhance the sustainability of this shellfishery. A field experiment was undertaken to ascertain shell characteristics (compression strength and thickness) of seed mussels grown at different shore heights, whether these characteristics changed after a period of growth under identical conditions, and if these characteristics reduced predation losses by crabs and birds. Results indicated that mussels grown at higher shore levels attained shell characteristics beneficial to predation resistance and that these were maintained after a period of growth at a lower shore level. A novel management plan for mussel cultivation was formulated from the results of this study by manipulating shore position according to the attainment of these predator resistant shell attributes and the spatial distribution of the main natural mussel predators (crabs and birds). This technique was expanded to address the mussel cultivation problem of low natural seed settlement.  相似文献   

6.
Blue mussels, Mytilus spp., have inhabited the brackish Baltic Sea, an environment lacking predatory crabs and starfish, for several thousand years. In this paper we examined whether Baltic Mytilus that were transplanted to the North Sea showed predator-inducible plasticity like their "marine" conspecifics. Our experiments showed that native North Sea Mytilus changed their morphology when exposed to waterborne scents from shore-crabs and starfish. These predators induced different kinds of changes, with emphasis on shell thickness and adductor muscle size, respectively. Baltic Mytilus responded in a similar way to crab scents, whereas starfish scents had a relatively weak effect on the morphology. Crab and starfish scent induced strengthening of the byssal attachment in North Sea Mytilus, with crabs providing more stimulation than starfish. Baltic mussels also improved the byssal attachment when exposed to either of the predators, but the attachment strength, as well as the response to crabs, were relatively weaker than that of North Sea mussels. We conclude that inducible plasticity still is present in Baltic Mytilus, despite their recent evolution in a predator-free environment. There is probably no strong selective pressure against inducible plasticity, but it could also be maintained in the population by gene flow from Mytilus in the adjoining North Sea. The question whether Baltic Mytilus are M. edulis or M. trossulus may also be relevant for the present results.  相似文献   

7.
A prerequisite for prey to show adaptive behavioural responses to predators is that the prey has the ability to recognise predators as threats. While predator recognition can be innate in many situations, learning is often essential. For many aquatic species, one common way to learn about predators is through the pairing of a novel predator odour with alarm cues released from injured conspecifics. One study with fish demonstrated that this mode of learning not only allows the prey to recognise the predatory cues as a threat, but also mediates the level of threat associated with the predator cues (i.e. threat-sensitive learning). When the prey is exposed to the novel predator with a high concentration of alarm cues, they subsequently show a high intensity of antipredator response to the predator cues alone. When exposed to the predator with a low concentration of alarm cues, they subsequently show a low-intensity response to the predator cues. Here, we investigated whether larval mosquitoes Culex restuans have the ability to learn to recognise salamanders as a threat through a single pairing of alarm cues and salamander odour and also whether they would learn to respond to salamander cues in a threat-sensitive manner. We conditioned individual mosquitoes with water or a low, medium or high concentration of crushed conspecific cues (alarm cues) paired with salamander odour. Mosquitoes exposed to salamander odour paired with alarm cues and subsequently exposed to salamander odour alone responded to the salamander as a threat. Moreover, the intensity of antipredator response displayed during the conditioning phase matched the response intensity during the testing phase. This is the first demonstration of threat-sensitive learning in an aquatic invertebrate.  相似文献   

8.
Escalation theory proposes enemy-related selection as the most relevant factor of natural selection among individual organisms. When hazardous to predators, prey might be considered enemies that influence predator evolution. Opisthobranch molluscs that prey on chemically defended prey are an interesting study case on this subject. Predation on chemically defended species paved the way for opisthobranchs to enter in an arms race, developing means to detoxify and/or excrete harmful compounds, which led to the sequestration of those compounds and their self-defensive use, an escalation of defenses. Here we aim to understand whether the opisthobranch predator is better protected than its chemically defended prey, using as predator–prey model, a nudibranch (Hypselodoris cantabrica) and the sponge it preys upon (Dysidea fragilis), and from which it obtains deterrent chemical compounds. Specimens of both species were collected on the Portuguese coast, and their crude extracts were analyzed and used in palatability tests. Nudibranchs revealed a higher natural concentration of crude extract, probably due to a progressive accumulation of the compounds. Both predator and prey extracts revealed similar mixtures of deterrent metabolites (furanosesquiterpenes). Palatability tests revealed a more effective deterrence in the nudibranch extracts because significant rejection rates were observed at lower concentrations than those necessary for the sponge extracts to have the same effect. We concluded that the predator is chemically better protected than its prey, which suggests that its acquisition of chemical defenses reveals a defensive escalation.  相似文献   

9.
Amphibians are able to learn to recognize their future predators during their embryonic development (the ghost of predation future). Here, we investigate whether amphibian embryos can also acquire additional information about their future predators, such as the level of threat associated with them and the time of day at which they would be the most dangerous. We exposed woodfrog embryos (Rana sylvatica) to different concentrations of injured tadpole cues paired with the odor of a tiger salamander (Ambystoma tigrinum) between 1500 and 1700 hours for five consecutive days and raised them for 9 days after hatching. First, we showed that embryos exposed to predator odor paired with increasing concentrations of injured cues during their embryonic development subsequently display stronger antipredator responses to the salamander as tadpoles, thereby demonstrating threat-sensitive learning by embryonic amphibians. Second, we showed that the learned responses of tadpoles were stronger when the tadpoles were exposed to salamander odor between 1500 and 1700 hours, the time at which the embryos were exposed to the salamander, than during earlier (1100–1300 hours) or later (1900–2100 hours) periods. Our results highlight the amazing sophistication of learned predator recognition by prey and emphasize the importance of temporal considerations in experiments examining risk assessment by prey.  相似文献   

10.
Although there is a large body of research on food webs in rocky intertidal communities, most of the emphasis has been on the marine benthic components. Effects of avian predation on highly mobile predators such as crabs, remains practically unstudied in rocky shore ecosystems. The crab, Cancer borealis, is an important component of the diet of gulls (Larus marinus, L. argentatus) at the Isles of Shoals, Maine, USA. C. borealis prey include the predatory gastropod Nucella lapillus L., the herbivore Littorina littorea, and mussels Mytilus edulis L. We hypothesized that gulls reduce abundance of C. borealis in the low intertidal and shallow subtidal, thereby allowing C. borealis prey to persist in high numbers. A study of crab tidal migration showed that C. borealis density nearly doubled at high tide compared to low tide; thus, crabs from a large subtidal source population migrate into the intertidal zone during high tides and either emigrate or are removed by gulls during low tides. Results from a small-scale (1 m2) predator caging experiment in the low intertidal zone indicated that enclosed crabs significantly reduced L. littorea abundance when protected from gull predation. In a much larger-scale gull exclusion experiment, densities of C. borealis increased significantly during low and high tides in exclosures relative to the controls. C. borealis density was inversely correlated with changes in the abundance of two mesopredators Carcinus maenas and Nucella lapillus, and with the space-occupier M. edulis. There was a similar negative correlation between abundance of C. borealis and the change in abundance of the herbivore L. littorea, but the trend was not significant. Mortality of tethered L. littorea was associated with C. borealis density across sites. However, preferred algae did not change in response to L. littorea density during the experiment. Thus, we found suggestive, but not conclusive, evidence for a three-level cascade involving gulls, crabs, and L. littorea. Our studies strongly suggest that gulls, as apex predators, generate three-level trophic cascades in rocky intertidal food webs by preventing the highly mobile subtidal predator, C. borealis, from establishing substantial populations in the low-mid intertidal zone thereby indirectly enhancing densities of two key mesopredators (N. lapillus, Carcinus) and blue mussels (M. edulis).  相似文献   

11.
Antlion larvae are sand-dwelling insect predators, which ambush small arthropod prey while buried in the sand. In some species, the larvae construct conical pits and are considered as sit-and-wait predators which seldom relocate while in other species, they ambush prey without a pit but change their ambush site much more frequently (i.e., sit-and-pursue predators). The ability of antlion larvae to evade some of their predators which hunt them on the sand surface is strongly constrained by the degree of sand stabilization or by sand depth. We studied the effect of predator presence, predator type (active predatory beetle vs. sit-and-pursue wolf spider), and sand depth (shallow vs. deep sand) on the behavioral response of the pit building Myrmeleon hyalinus larvae and the sit-and-pursue Lopezus fedtschenkoi larvae. Predator presence had a negative effect on both antlion species activity. The sit-and-wait M. hyalinus larvae showed reduced pit-building activity, whereas the sit-and-pursue L. fedtschenkoi larvae decreased relocation activity. The proportion of relocating M. hyalinus was negatively affected by sand depth, whereas L. fedtschenkoi was negatively affected also by the predator type. Specifically, the proportion of individual L. fedtschenkoi that relocated in deeper sand was lower when facing the active predator rather than the sit-and-pursue predator. The proportion of M. hyalinus which constructed pits decreased in the presence of a predator, but this pattern was stronger when exposed to the active predator. We suggest that these differences between the two antlion species are strongly linked to their distinct foraging modes and to the foraging mode of their predators. Reut Loria and Inon Scharf contributed equally to the paper.  相似文献   

12.
Kimbro DL 《Ecology》2012,93(2):334-344
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.  相似文献   

13.
This paper is concerned with the ecological significance of variation in shell form within the thaisid gastropod genus Lepsiella in New Zealand. Shell form has been investigated by measurement of shell height and breadth, aperture length and width, the diameters of consecutive whorls, apical angle, shell weight, and shell capacity, although in many cases shell height and shell breadth could not be measured because of erosion. L.albomarginata has been studied intensively at 4 stations in the South Island, and L. scobina less intensively at 6 stations in the North and South Islands. Comparisons of pairs of characters between stations have been tested by regression analysis and analysis of covariance where appropriate. Shells of L. albomarginata are relatively taller and narrower, and have a thicker wall, at a very sheltered station (Hakahaka Bay) that at more wave-exposed stations. L. scobina (sensu stricto), characterised by the presence of spiral ribs on the shell, exhibits less striking but comparable differences in shell shape. In laboratory tests in a tidal tank the thicker-shelled L. albomarginata from a sheltered station (Hakahaka Bay in Port Underwood) was much better able to resist attack by the shore crab Hemigrapsus edwardsi than was L. albomarginata from a nearby wave-exposed station (Whites Bay, near Cape Campbell, South Island). L. scobina from both stations was resistant to attack. H. edwardsi abounds at sheltered stations, but is missing from wave-exposed rock reefs such as those at Whites Bay, so that the ability to survive encounters with shore crabs is ecologically important to L. albomarginata inhabiting sheltered stations. L. scobina occupies a lower zone on the shore, where it is probably liable to encounter other more powerful predators. Its spiral ribs probably strengthen the shell. We do not know to what extent differences in shell form and thickness depend on environmental factors, and to what extent they originate genetically. Thin shells are associated with an abundance of mussels (Mytilus edulis ssp. aoteanus or Modiolus neozelanicus). There is an interesting possibility that a scarcity of mussels or other food caused by superior nonspecific predators might result in the production of better-protected Lepsiella.  相似文献   

14.
Summary Increased basking and reduced agility in gravid female southern water skinks (Eulamprus tympanum) suggest that they will be more vulnerable to predators. However, gravid females shift their anti-predator tactics towards crypsis, by allowing potential predators (such as a human observer) to approach more closely than do males and non-gravid females. Gravid females were taken no more frequently than were non-gravid females or males when exposed to two types of natural predators, birds (kookaburra, Dacelo gigas) or snakes (common blacksnakes, Pseudechis porphyriacus) in field enclosures. Both these results suggest that the vulnerability of potential prey in this system is determined by the predator's probability of detecting a potential prey item, not its probability of capturing the prey item after detection. Hence, laboratory-based measures of performance demonstrating reduced escape speed may sometimes have little relevance to actual fitness under field conditions, if the probability that an animal will be taken by a predator depends primarily on whether or not it is seen, rather than on how quickly it can escape. Correspondence to: L. Schwarzkopf  相似文献   

15.
Chemically mediated alarm reactions of the common periwinkle, Littorina littorea (L.), were studied in laboratory experiments during two consecutive summers, and one intermediate autumn season. Responses to chemical stimuli were detected as crawl-out responses, i.e. movements of snails out of the water. Snails were exposed to extracts of injured conspecifics, extracts of the mussel Modiolus modiolus (L.), and water conditioned by the predatory crab Carcinus maenas (L.), which had been maintained on different diets. In experiments carried out during the summer, a significantly larger number of snails moved out of the water when exposed to chemical stimuli from injured conspecifics, compared to chemical stimuli from injured mussels or filtered seawater. These results suggest that chemical alarm substances are present in L. littorea. Water conditioned by crabs that had been fed L. littorea released significantly more crawl-out responses compared to water conditioned by crabs that had been kept on a fish diet. When tested in autumn, no significant differences were found in responses to the above-mentioned water samples. Crawl-out responses under different light regimes were also investigated. All series of experiments carried out in the dark evoked a higher number of responses compared to series that took place in light. These findings may indicate an adaptation of snails to night-active predators. In total, the current results suggest that a L. littorea diet may chemically “label” the predator crab with snail alarm substances, and that predator-induced responses of L. littorea are actually responses to conspecific alarm substances released from crabs that have been maintained on a L. littorea diet. The response to the alarm signal, however, appears to be dependent on season and light conditions; some ecological implications of these findings are also discussed. Received: 8 January 1999 / Accepted: 29 March 1999  相似文献   

16.
The cost of overcoming prey defenses relative to the value of internal tissues is a key criterion in predator/prey interactions. Optimal foraging theory predicts: (1) specific sizes of prey will result in the best returns to predators, and (2) there will often be a size at which the cost/benefit balance is low enough to effectively exclude predation. Data presented here on styles of repaired shell damage and size at which injury had been sustained was collected from samples of terebratulide brachiopods from the Antarctic Peninisula (Liothyrella uva), Falkland Islands (Magellania venosa and Terebratella dorsata) and Chile (M. venosa). The predominant form of damage on shells was indicative of predators attacking the valve margins. The modal size for repaired damage was more than 10 mm smaller than the modal size for the overall size distribution in each species and there were no repaired attacks in the largest size classes of any species. These data suggest that size forms a refuge from predation, as would be predicted by optimal foraging theory. The optimal sizes that predators appeared to attack vary between species, as do the sizes that provided a refuge from predation. High levels of multiple repairs (19% of the M. venosa population from the Falkland Islands sampled had 2 or more repairs) suggest that the mortality following attack is low, suggesting that many predators abandon their attacks.  相似文献   

17.
Hypoxia due to the over enrichment of waters by nutrients is becoming a global problem. In mussels, enhanced byssus thread production is an important adaptation to the presence of crustacean predators and to energetic hydrodynamic regimes. Thread production is an energy-consuming process, so this study used the green mussel Perna viridis (L.) to examine the response to predator exposure combined with hypoxia. Hypoxia is common in sheltered bays in Hong Kong, and the mussels were collected in one such bay, Lok Wo Sha (latitude/longitude: 22o18′ N/114o10′ E) in January, 2009. The predator used in the experiments was the swimming crab Thalamita danae. Oxygen concentrations used in the 48-h experiments ranged from hypoxic to normoxic (1.5 ± 0.3 mg l−1, 3.0 ± 0.3 mg l−1 and 6.0 ± 0.3 mg l−1). Fewer byssus threads which were also shorter and thinner were produced at reduced oxygen levels, no matter if the predator was present or not; the frequency the mussels shed stalks was also lower. Mussels exposed to the predator, however, have enhanced byssus thread production at all oxygen levels when compared with the control. This has highlighted the significance of anti-predator responses for the survival of individuals even under a stressful environment in which energy supply is limited by aerobic metabolism. Interactive effects between oxygen level and predator exposure were observed for the byssus thread production (frequency of shed stalks, mean byssus thread length, cumulative byssus thread volume), with values obtained at 1.5 and 3.0 mg O2 l−1 being statistically indistinguishable for the control group without predator but not for the predator group. The lack of differences in the byssus thread production at lower oxygen levels in the absence of predator may indicate the minimum amount of byssus that is required for settlement on a substrate.  相似文献   

18.
M. Mascaró  R. Seed 《Marine Biology》2001,139(6):1135-1145
Information concerning the way juvenile crabs choose their diet from a variety of prey types can be useful for a better understanding of community dynamics, as well as for the adequate management of natural resources. Prey size and species selection by juvenile Carcinus maenas (15-35 mm carapace width, CW) and Cancer pagurus (20-40 mm CW) feeding on four bivalves of contrasting shell morphology were investigated. When offered a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas, and Cerastoderma edule presented individually, crabs generally showed evidence of size-selective predation. Cancer pagurus selected larger mussels relative to the size of their chelae (relative prey size, RPS) than did Carcinus maenas of similar and even larger carapace width. However, the RPS of selected O. edulis and Cerastoderma edule were similar for all crabs, suggesting that certain prey features constitute effective barriers even to the powerful chelae of Cancer pagurus. When offered a wide size range of mussels and oysters simultaneously, all crabs consistently selected mussels. When offered O. edulis and Crassostrea gigas, crabs consumed both these oyster species in similar numbers. Carcinus maenas consumed similar numbers of mussels and cockles; Cancer pagurus, however, showed no preference for either prey in the smaller size classes but selected more mussels than cockles as prey increased in size. Although previous studies report that adult Carcinus maenas select prey species according to their profitability (amount of food ingested per unit of handling time, milligrams per second), consumption rates of the size classes of prey selected by juvenile shore crabs did not always parallel prey value. Although variations in crab strength can account for many of the differences between the foraging strategy of juvenile and adult C. maenas, our results suggest that juvenile crabs are less species selective than adults as a result of the restrictions imposed on small individuals that have limited access to larger prey.  相似文献   

19.
Pagurus longicarpus hermit crabs depend on empty gastropod shells for protection against predation. Hermit crabs avoid gastropod shells in which holes have been drilled by naticid gastropods, and hermit crabs forced to occupy drilled shells are more vulnerable to predation by green crabs, Carcinus maenas. In this study, we examined the effect of predator cues on P. longicarpus shell investigation behavior and shell choice. In paired laboratory shell choice trials, we examined hermit crab response to green crab chemical cues. We compared hermit crabs from two sites differing in the percentage of Littorina littorea shells with drill holes. The percentage of time hermit crabs spent occupying intact shells increased significantly in the presence of predator cues. The effect of predator cues on the amount of time hermit crabs spent investigating shells differed between individuals from the two sites. Predator effluent had a marginal effect on the proportion of hermit crabs initially choosing intact shells and within 15 min most hermit crabs in both treatments occupied intact shells due to shell switching. These results indicate that predation cues alter P. longicarpus shell choice behavior favoring intact shells, which provide greater protection. In summary, predation appears to be a key factor influencing hermit crab shell selection behavior.Communicated by T. Czeschlik  相似文献   

20.
Unless sensory control is coupled with developmental flexibility, organisms are unable to produce adaptive phenotypes in response to environmental risk cues. However, empirical examples of adaptive phenotypic plasticity focus largely on development and rarely on sensory control. Here, I ask whether past exposure to predation cues affects an intertidal whelk’s (Nucella lamellosa) sensitivity to the scent of a known predatory crab (Cancer productus). I pre-conditioned whelks for 30 days with the smell of crabs eating other whelks and then, after a period of rest (14 days in fresh seawater free of predator effluent), re-introduced them to different concentrations of waterborne crab scent. Relative to controls, pre-conditioned whelks expressed crab-defences at significantly lower concentrations of crab effluent, suggesting the pre-conditioning reduced their risk–response threshold. Results remind us that the full scope of factors controlling adaptive phenotypic plasticity in natural populations remains underappreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号