首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
"十二五"期渭河定西段水污染较为严重,实测水质类别超标,继而渭河定西段水污染治理势在必行。因此,我市应积极采取措施治理及保护渭河定西段水质,使其更好地为建设美好定西推动全市经济社会又好又快发展做出贡献。  相似文献   

2.
高浓度阿维菌素生产废水治理与资源回收技术研究   总被引:8,自引:0,他引:8  
采用预处理一厌氧水解-二段接触氧化工艺处理阿维菌素废水,在厌氧段停留时间为10h,好氧段停留时间为6h条件下,厌氧好氧段COD总去除率达91%,  相似文献   

3.
以前置厌氧池的氧化沟工艺为研究对象,根据氧化沟溶解氧分布情况,将氧化沟简化为1个缺氧段以及3个好氧段,并在第1好氧段中悬挂生物填料接种水蚯蚓,建立"水蚯蚓-微生物共生系统",通过溶解氧、混合液回流比、污泥回流比的控制保持该系统的微生态平衡.从水蚯蚓动力学角度改进提出T-FCASM新模型,建立并校验"水蚯蚓-微生物共生系统"生物场-水力场耦合模型(T-FCASM-Hydro),根据单因素试验和多因素正交试验分别模拟不同水平溶解氧、混合液回流比、污泥回流比对氧化沟中"水蚯蚓-微生物共生系统"脱氮除磷效果的影响.正交试验的方差分析结果显示,当好氧段1溶解氧为6.5mg.L-1、混合液回流比为100%、污泥回流比为100%时氧化沟可保持最佳脱氮除磷效果.  相似文献   

4.
延长缺氧水力停留时间对A-AAO工艺氮磷去除影响的研究   总被引:1,自引:0,他引:1  
相比传统厌氧-缺氧-好氧(简称AAO)脱氮除磷工艺,改良AAO工艺(定义为A-AAO)增加了回流污泥的硝酸盐反硝化区并对进水多点分配,氮磷去除能力得到显著提高。为进一步优化A-AAO的除污染能力,本研究以A-AAO工艺后2部分缺氧和好氧段(AO段)为对象,研究AO段水力停留时间改变对A-AAO工艺脱氮除磷的影响。试验采用两套小试规模A-AAO工艺(定义为1#和2#反应器)开展研究,1#反应器缺氧段及好氧段停留时间分别为5.5 h和10 h,2#反应器缺氧段及好氧段停留时间分别为2.5 h和13 h。研究结果表明:总停留时间不变,缩短好氧停留时间而延长缺氧停留时间有助于氮磷的去除。1#和2#反应器总氮和总磷平均去除率分别为61.36%、57.08%和85.72%、82.0%。  相似文献   

5.
倒置AAO工艺聚磷微生物的吸磷行为   总被引:7,自引:1,他引:6       下载免费PDF全文
采用人工配水和市政污水研究了“缺氧-厌氧-好氧”(倒置AAO)脱氮除磷工艺中,聚磷微生物(PAOs)在低碳源、高硝酸盐环境下的释磷和吸磷行为.结果表明,在低碳源、高氮和磷环境中,尽管PAOs在缺氧厌氧段释磷程度低,如果适当延长厌氧段和好氧段的HRT、且好氧曝气较充分,仍能超量吸收磷.PAOs过量吸磷的能量来源不仅仅是厌氧段吸收与合成的胞内聚合物在好氧段的氧化,还来自好氧环境正常代谢过程中多余的能量.外加碳源的投加时间点对PAOs吸磷的影响不显著.PAOs在厌氧段后期出现过量吸磷现象,推测是细胞内有机物厌氧降解产生的ATP通过某种代谢途径被用于无机磷的吸收.  相似文献   

6.
当前我国水资源污染严重,受污染水主要体现为水体氮氨营养超标,污染情况日趋严重。传统活性污泥法很难解决现实污水中高氮氨问题。好氧颗粒污泥法具有较好抗化学毒素,沉降效率高,污水和污泥易分解,能够有效改善污水处理系统的处理效果和处理成本。本文研究利用好氧颗粒污泥来处理现实化学肥料企业污水,分析驯化过程中好氧颗粒污泥的污染物去除效果变化和物理性质变化,从而研究好氧颗粒污泥法对高浓度氨氮污水的处理效果。  相似文献   

7.
A/O-MBR处理餐饮废水过程中DOM特性解析   总被引:1,自引:0,他引:1  
借助凝胶过滤色谱(GFC)分子量测定技术和三维荧光(EEM)光谱技术,对厌氧微网与好氧平板膜-生物反应器(A/O-MBR)联合处理餐饮废水过程中各阶段的溶解性有机物(DOM)及污泥胞外聚合物(EPS)的性质进行研究。分子量研究表明:好氧段污泥滤液的GFC谱图中在10 min以前有大分子物质析出,分析是微生物代谢产物;且随着处理过程的进行水样DOM中的分子量分布范围不断变宽。EEM光谱研究表明:进水、好氧段出水、好氧段污泥滤液的DOM中的2种主要荧光物质为高激发波长类色氨酸和可见区类富里酸,而厌氧段出水中仅有高激发波长类色氨酸,且峰强较强。同时,厌氧段出水中在形成可见区类富里酸的区域内有成峰趋势,分析是由较强的类色氨酸峰的掩蔽作用造成的。好氧段污泥EPS中存在3个明显的荧光峰,指示了色氨酸和腐殖酸的存在。  相似文献   

8.
投菌生物接触氧化法处理洁霉素废水的机理研究   总被引:15,自引:1,他引:14  
罗国维  杨丹青  林世光 《环境科学》1994,15(6):20-22,32
研究了“水解酸化-二段生物接触氧化-混凝”工艺处理高浓度洁霉素废水处理系统中好氧微生物膜特性,分布规律、降解作用,高效降解菌的选育,投加菌在反应器中能否保持优势等问题,以探讨用投菌生物接触氧化法处理洁霉素废水的机理,对本系统好氧微生物膜进行后仍存于反应器中并占有优势,最优势菌株经鉴定属气单胞菌属、通过对中试好氧处理出水进行定性定量分析,寻找其引起剩余CODcr值的原因。  相似文献   

9.
研究了低温低碳氮比条件下好氧段添加AquaMat(s阿科蔓)的A2/O工艺的挂膜启动实验。结果表明:在环境温度为1012℃,C/N为3.5左右的条件下,当系统HRT为10 h,SRT为15 d,污泥回流比为100%,硝化液回流比为200%,好氧段DO在212℃,C/N为3.5左右的条件下,当系统HRT为10 h,SRT为15 d,污泥回流比为100%,硝化液回流比为200%,好氧段DO在23 mg/L,初始MLSS为4 000 mg/L时,好氧段阿科蔓经30 d左右挂膜成功。系统对COD,氨氮,总氮的去除率分别达到90%、97%、60%。对总磷的去除率低且不稳定。实验研究了挂膜过程中COD、氨氮、硝酸盐氮、总氮、总磷、ORP、MLSS及微生物相的变化规律并分析了变化原因。  相似文献   

10.
溶解氧对固定气体流量曝气系统亚硝化特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
通过实时控制系统并结合其他工艺参数的调控,在SBR系统中实现了垃圾渗滤液短程硝化过程的快速启动,并在稳定期考察了固定气体流量曝气系统中溶解氧(DO)对短程硝化的影响。结果表明:在线监测p H的"氨谷"可判断氨氧化反应的终点;采用固定气体流量的曝气方式,使得单周期好氧段后期ρ(DO)高达7.95 mg/L,出水亚硝态氮积累率维持在98.3%左右,氨氮去除率高达96.5%;好氧段后期高溶解氧并没有导致硝化菌(NOB)的再次增长,短程硝化系统稳定。  相似文献   

11.
采用厌氧-好氧工艺处理一种染料工业废水,在进水COD为1200mg/L,色度为500倍时,厌氧段有机负荷(COD)小于5.3kg/(m-3·d),水力停留时间6~10h,好氧段水力停留时间6.5h的条件下,出水COD<200mg/L,色度<50倍,达到了排放标准。同时,还着重讨论了厌氧段在去除COD、色度以及提高废水在好氧条件下的可生化性方面的独特作用。   相似文献   

12.
于宏兵  黄涛  林学钰  吴睿 《环境科学》2005,26(6):110-114
采用70℃高温水解酸化、高温厌氧、高温好氧、高温生物活性碳(BAC)组合工艺,对玉米深加工行业的高温工艺废水进行分相与分段处理研究,分别对COD、VFA、氨基酸等的去除处理效果进行研究和评价,在高温条件下完成高温高浓度有机废水的处理并达到回用热水、节能目的.结果表明:组合工艺系统对高浓度有机废水COD总去除率达到99.62%,VFA和氨基酸均为100%,出水COD<50mg/L,达到中水回用COD标准值,其中水解酸化相COD去除率占总去除率的49.7%,产甲烷相占33.7%,好氧段占14.5%,BAC段占1.1%;厌氧段占VFA总去除的56%,好氧段为21.2%,BAC段为21.8%;厌氧段占氨基酸总去除的34.8%,好氧段占62%,BAC段占3%.其中水解酸化有机负荷达到36.2kg/(m3·d).高温好氧和BAC组合工艺进水COD 3 500mg/L条件下,COD去除率仍能达到95.8%.整个系统运行平稳,抗冲负荷强,各段出水pH均在6.6~7.5之间波动.  相似文献   

13.
海河流域河流耗氧污染变化趋势及氧亏分布研究   总被引:2,自引:1,他引:1  
张洪  林超  雷沛  单保庆  赵钰 《环境科学学报》2015,35(8):2324-2335
耗氧污染是海河流域河流水污染的主要类型,耗氧污染物对河流溶氧的消耗产生的氧亏效应对水生生物产生重大影响.收集海河流域重点水功能区88个监测站点2000—2011年CODCr/CODMn、NH3-N指标,分析河流耗氧污染特征及演变趋势,并基于水质目标(2 mg·L-1)下计算出海河流域河流氧亏量.结果表明,流域河流耗氧污染总体呈现好转趋势,耗氧污染指标(NH3-N、CODCr/CODMn)逐渐降低,I~III类水质站点比例增加,劣V类水质站点数和超标倍数减少;CODMn降低幅度大于NH3-N,主要污染物由COD向NH3-N转化.海河流域重点氧亏区域主要集中于中部平原段和下游滨海段,未氧亏区域多集中于上游山区段;北三河、黑龙港运东与徒骇马颊河水系中部平原段整体处于缺氧区域,子牙河水系中部平原区缺氧现象最为严重,氧亏区域位于石家庄洨河下游、滏阳河艾辛庄下游至献县段及石津总干以南;海河流域内中部平原段河流氧亏的主要贡献仍以COD为主,但氨氮的贡献显著,其中黑龙港运东水系、徒骇马颊河水系和北三河水系,COD耗氧均值都高于5 mg·L-1,在北三河和子牙河水系,氨氮耗氧均值达到了4 mg·L-1.  相似文献   

14.
利用经驯化的以嗜碱菌群为主的好氧活性污泥及常规厌氧、好氧污泥,针对不同浓度的棉浆黑液在现场进行了单独"好氧"及"好氧-厌氧-好氧"全流程工艺实验。结果表明:对棉浆黑液直接进行好氧曝气,可将原水pH值自12.4左右稳定降低至10以下,COD去除率可达40%左右。全流程实验中厌氧效果显著,pH值最低可降至8.2,整个系统抗冲击能力强,运行稳定,COD总去除率保持在63%以上。  相似文献   

15.
采用厌氧-好氧工艺处理一种染料工业废水,在进水COD为1200mg/L,色度为500倍时,厌氧段有机负荷(COD)小于5.3kg/(m ̄3·d),水力停留时间6~10h,好氧段水力停留时间6.5h的条件下,出水COD<200mg/L,色度<50倍,达到了排放标准。同时,还着重讨论了厌氧段在去除COD、色度以及提高废水在好氧条件下的可生化性方面的独特作用。  相似文献   

16.
厌氧UASB-好氧工艺处理染料废水的研究   总被引:5,自引:2,他引:5  
报道厌氧-好氧工艺处理染料废水的试验结果。厌氧段采用UASB反应器,好氧段采用普通活性污泥法。试验结果表明,进水COD1150—1300mg/L、色度500倍的染料废水,在厌氧段停留6—10h,可获得60%以上的COD去除率,色度降到50—100倍。后续曝气6h,总COD去除率可达85%-90%,色度降至20倍左右。进出水的光谱分析揭示,染料废水的脱色主要发生在厌氧段.并且通过生物降解作用来实现。从这些结果得出,UASB-好氧工艺是处理染料废水的一种经济有效的方法。  相似文献   

17.
对2016—2019年南盘江(华宁段)流域水环境变化趋势进行分析,结果表明:2016—2019年南盘江(华宁段)水环境总体呈下降趋势,主要是总磷超标,原因主要为生活面源污染和农业面源污染,提出对南盘江(华宁段)进行治理的相应措施。  相似文献   

18.
pH值对SBR单级好氧生物除磷的影响   总被引:5,自引:2,他引:3       下载免费PDF全文
在2个序批式反应器(R1、R2)中,以合成废水为对象,研究了不同pH值(R1:pH 8±0.2; R2:pH 7±0.2)对单级好氧生物除磷的影响;并通过比较周期中主要储能物质的变化,探讨了产生不同除磷效果的原因.结果表明,R1与R2均具有较高除磷性能, R1与R2中的平均去除率分别为94.9%,83.5%,pH值对SBR单级好氧生物除磷有一定的影响.导致R1具有较高除磷性能的原因是其对聚磷的依赖程度更大.好氧段R1糖原积累量低于R2(R1为1.42mmol/g, R2为1.55mmol/g),但降解量却高于R2(分别为1.41,1.19mmol/g);静置期,R1中糖原无明显变化,R2中则观察到明显的糖原降解.R1与R2均有明显的释磷现象, R1释磷量高于R2(释磷量分别为9.65,7.33mg/L).整个周期中,R1中PHA 无明显变化,而R2中则在好氧段有少量减少,静置期有少量上升.  相似文献   

19.
亚硝酸盐对A2O系统脱氮除磷的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在A2O系统中,通过分别向缺氧区和好氧区投加亚硝酸盐的方式,考察和分析了亚硝酸盐的存在对系统脱氮除磷性能的影响.结果表明,系统的硝化、反硝化及除磷性能均对亚硝酸盐的存在比较敏感.亚硝酸盐存在于好氧段时对硝化性能的影响较大,当好氧段亚硝酸盐浓度达到25mg/L时,系统硝化速率仅有5.26mg/(L·h).亚硝酸盐存在于缺氧段时对反硝化性能的抑制作用较大,且当亚硝酸盐长期存在于缺氧段时,系统的反硝化速率降低至11.83mg/(L·h),与正常情况相比下降了60%;亚硝酸盐存在于好氧段时会严重抑制聚磷菌的吸磷能力,系统磷去除率仅有22%.当亚硝酸盐存在于缺氧段时,会引发系统的污泥膨胀问题,导致聚磷菌流失,聚磷菌数量减少到2.02%左右,继而引发系统除磷效果严重恶化.  相似文献   

20.
针对传统印染废水处理工艺通常需要投加大量混凝药剂,导致工艺流程长,化学污泥产量高,且化学药剂对后续好氧生化段微生物活性造成抑制的问题,对好氧生化法进行工艺优化,发现在各项工艺参数适宜的条件下,好氧活性污泥对印染废水原水具有良好的适应性,且长期运行对于COD去除率平均可达65%,可以为实际印染废水处理工程应用中使好氧工艺发挥最佳性能提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号