首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
上海郊区稻田氮素流失研究   总被引:15,自引:0,他引:15  
通过测坑和大田小区试验,研究了上海郊区稻田氮素排水流失和渗漏流失的特征、相关因素和流失负荷。结果表明,稻田综合排水TN为6.55mg/L,流失负荷为16.68kg/hm^2,以铵态氮为主,稻田氮素的排水流失负荷为16.68kg/hm^2。稻田渗漏水氮浓度与前茬作物有关,草莓和蔬菜高,麦茬低,TN为5.73mg/L,渗漏负荷为22.92kg/hm^2,其中硝态氮占50%左右。稻田氮素总流失负荷占稻季化肥用量的13.23%。测坑和大田试验都证明,施用有机肥可较多地减少稻田氮素流失量。  相似文献   

2.
农田氮素淋溶损失影响因素及防治对策研究   总被引:21,自引:0,他引:21  
农田氮素损失是造成农业非点源污染的主要原因之一,其中由于大量施用氮肥引起的土壤氮素淋溶损失又是农田氮素损失的重要途径.因此,农田氮素损失研究已成为国际土壤化学和环境科学领域研究的热点问题之一.根据近年来国内外在农田氮素运移领域的研究成果,从降雨和灌溉、施肥状况、土壤性质、耕作方式、作物种类和种植方式等方面分析了影响农田氮素淋溶损失的主要因素,提出了改进施肥方式、优化氮肥管理、推广缓释氮肥以及改善土地利用方式等提高氮肥利用率、减小氮素淋溶损失的防治对策.  相似文献   

3.
通过测坑试验,研究了黄浦江上游蔬菜田渗漏水中氮素的变化动态和流失规律。结果表明,蔬菜田渗漏水中氮素以NO3^--N为主,NO3^--N作为氮素在土壤中流失的主要形态将成为施用氮肥造成地下水污染的重要来源;施用精制有机肥或粗猪粪代替部分化学氮肥有利于减少蔬菜田渗漏水中氮素的流失。  相似文献   

4.
从氮素流失的途径、影响因素和研究方法等3个方面对非点源污染氮素流失的相关研究进行了总结。指出地表径流、农田排水和淋溶是氮素流失的3条主要途径;降雨、坡度、施肥、耕作方式、土壤理化性质和管理模式等是影响氮素流失的关键因素;基于野外观测与模拟实验、查阅文献资料建立负荷估算模型是氮素流失定量研究的重要方法。最后,还对今后的研究重点进行了展望。  相似文献   

5.
贵州农业土壤氮素流失对环境的影响及防治对策   总被引:1,自引:0,他引:1  
氮是引起水体富营养化的主要因子之一,国内外学者对氮素损失的途径、机制、影响以及防治措施进行了许多研究.在总结贵州农业土壤氮素含量特点的基础上,阐述了土壤氮素流失特征及其对环境的影响,提出了相应的防治措施,以期为减少农田氮素损失、优化农业非点源污染管理与控制提供参考.  相似文献   

6.
茭白田坑面水和渗漏水中氮素变化动态研究   总被引:1,自引:0,他引:1  
茭白是黄浦江上游地区广泛种植的一种水田蔬菜.通过测坑定位试验,研究了茭白田坑面水和渗漏水中氮素变化动态和流失规律.结果表明,各处理茭白田坑面水中氮素形态以NH+4\|N为主,施肥后1~3 d,其占TN比例可达90%以上;渗漏水中氮素形态主要以NO-3\|N为主,施肥后呈现先上升后下降的趋势.通过增施有机肥、减少20%的无机氮肥用量可使坑面水TN减少20.74%,渗漏水中NO-3\|N减少16.10%,减少了氮素流失,且对茭白产量没有显著影响.、=  相似文献   

7.
农业区氨氮流失模型   总被引:12,自引:0,他引:12  
定量分析了农田降水、产流,下渗,排水,蒸散发,灌溉之间的关系并提出相应的数学方程式,采用Langmuir等温线动态描述土壤中氨氮吸附与两相平衡状态,在此基础上,建立了一个模拟随农业排水和产沙的充失数学模型,并以江苏省锡澄农业区为例说明了这一模型的应用。  相似文献   

8.
三峡库区农田径流污染情势分析及对策   总被引:6,自引:0,他引:6  
根据三峡库区农田径流污染负荷输出定量化研究结果提示:“三峡库区农田径流污染较为严重。”我们对该区造成农田径流污染严重的因素进行了分析,结果表明:降雨冲刷时段集中,地形坡度有利于地表冲刷,农作物按排抗蚀能力差和化肥农药流失严重等是导致三峡库区农田径流污染严重的主要因素。我们还提出了减少三峡库区农田径流污染的防治对策。  相似文献   

9.
南方平原地区农药污染农田生态环境质量评价   总被引:1,自引:0,他引:1  
本文根据南方热带亚热带平原地区农田生态环境特征,以广东省佛山市农田环境为例,从卫生毒理学和生态学角度出发,探讨了加权污染指数法在农药污染农田环境质量评价中的应用,提出了利用植物对农药的吸收系数和土壤中农药的流失系数确定评价因子权重系数的方法。根据南方平原生态环境特点确定土壤中的农药“残留允许量”;并认为农药标准具有较强的区域性和地带性,不宜制定单一的标准,南方热带亚热带地区农业土壤农药标准应严于北方。  相似文献   

10.
采煤塌陷地积水对土壤氮素矿化过程的影响   总被引:1,自引:0,他引:1  
煤炭开采导致大面积的土地塌陷,使大量耕地出现常年积水或季节性积水,对塌陷地土壤氮素矿化过程产生一定影响。采集了某矿采煤塌陷地土壤样品,进行好气和淹水培养条件下间歇淋洗培养实验,研究了塌陷地积水对土壤氮素矿化过程的影响。经过62d的培养,40d左右氮素的矿化过程趋于稳定,淹水培养条件下土壤氮素最终累积矿化量为68.99mg/kg,约为好气培养条件的10倍,且淹水培养条件下土壤氮素矿化势可达69.472mg/kg,均矿化速率为5.210mg/(kg·d),说明淹水对土壤氮素矿化过程有显著的促进作用。将实验所得累积矿化量分别代入简单指数模型及双因子指数模型进行拟合,发现简单指数模型能有效模拟好气和淹水培养条件下土壤氮素矿化过程,并获得了2种培养条件下土壤氮素矿化过程的模型参数。  相似文献   

11.
Deposition is one of the main loss terms for ammonia and ammonium from the atmosphere. It is also the input for ecosystems that can lead to drastic changes and effects. Deposition networks are needed to evaluate the need and the effect of policies to reduce nitrogen emissions, but also for studying deposition parameters and for developing deposition models. As with ambient concentrations of ammonia, deposition, especially dry deposition, varies strongly in space and in time. Furthermore, the bi-directional surface-atmosphere exchange of ammonia makes the combination of ambient concentration measurements with inferential models inadequate. Developing deposition monitoring networks with reasonable accuracy and representativeness is therefore not straightforward. In Europe several projects have addressed deposition monitoring. From these results it is concluded that a monitoring strategy should consist of a network with a limited amount of super sites combined with a larger number of sites where low cost methods are applied, together with models for generalisation.  相似文献   

12.
Sustainable development requires that per capita inclusive wealth—produced, human, and natural capital—does not decline over time. We investigate the impact of changes in nitrogen on inclusive wealth. There are two sides to the nitrogen problem. Excess use of nitrogen in some places gives rise to N-pollution, which can cause environmental damage. Insufficient replacement of nitrogen in other places gives rise to N-depletion, or loss of nutrient stocks. Neither is explicitly accounted for in current wealth measures, but both affect wealth. We calculate an index of net N-replacement, and investigate its relationship to wealth. In countries with low levels of relative N-loss, we find that the uncompensated loss of soil nitrogen in poorer countries is associated with declining rates of growth of inclusive per capita wealth. What is less intuitive is that increasing fertilizer application in both rich and poor countries can increase per capita inclusive wealth.  相似文献   

13.
14.
The available reactive nitrogen measurements from the global free troposphere obtained during the period of 1985–1995 have been compiled and analyzed. The species of interest are NO, NOx (NO+NO2), NOy, PAN, HNO3 and O3. Data extending to 13 km have been gridded with a 5°×5° horizontal and 1 km vertical resolution. The data have been divided into two seasons, namely “Winter” and “Summer” depending upon the time and location of the observations. Data described here as well as additional analysis have also been archived and are accessible on-line through the World Wide Web at: http://george.arc.nasa.gov/∼athakur. Global maps of the reactive nitrogen species distribution are produced in a form that would be most useful for the test and evaluation of models of tropospheric transport and chemistry. Limited comparisons of the observed reactive nitrogen species data with predictions by 3-D global models were performed using three selected models. Significant model to model as well as data to model differences were frequently observed. During summer, models tended to underpredict NO (−25 to −60%) while significantly overpredicting HNO3 (+250 to +400%) especially in the upper troposphere. Similarly, the seasonal HNO3 variations predicted by some models were opposite to those observed. PAN was generally overpredicted, especially in the upper troposphere, while NOy was underpredicted. Ozone on average was better simulated but significant deviations at specific locations were evident. By comparing model predictions with observations, an overall quantitative assessment of the accuracy with which these three models describe the global distribution of measured reactive nitrogen species is provided. No reliable trend information for any of the reactive nitrogen species was possible based on the presently available data set. The reactive nitrogen data currently offer only a limited spatial and temporal coverage for the validation of global models.  相似文献   

15.
Factors influencing nitrogen retention in forest soils   总被引:4,自引:0,他引:4  
Leaching and agitation experiments with soil organic horizons showed that nitrogen pollutant concentration, temperature, contact time and neutral soluble salts influence the fate of enhanced ammonium and nitrate inputs to the soil and the leaching of inorganic and organic nitrogen. Soils investigated included L, F and H horizons under Sitka spruce, the L and F horizons under Scots pine and Japanese larch and L and O horizons under Calluna. Effects attributable to species were also observed. The results are discussed in the light of their relevance to being incorporated into models of the effects of excess nitrogen inputs to forest soils, and in view of current concern that forest ecosystems in areas of high nitrogen deposition may become nitrogen saturated.  相似文献   

16.
定量的河流水体中氮浓度预测方法有很多种,如何优选出预测精度较高的方法一直是学术界多年来致力于研究的重点。本研究采用因子分析法对预测方法的精度评价指标进行分析,并建立了预测方法精度的评价模型,对回归分析法、神经网络法、灰色系统法和增长率统计法4种水体氮浓度预测方法进行综合评估,优选出精度较高的河流水体氮浓度预测模型——BP神经网络预测模型。结果表明,此评估模型对类似研究具有一定的参考价值,能为选择出合适的河流水体氮浓度预测方法提供依据。  相似文献   

17.
Nitrogen in aquatic ecosystems   总被引:6,自引:0,他引:6  
Rabalais NN 《Ambio》2002,31(2):102-112
Aquatic ecosystems respond variably to nutrient enrichment and altered nutrient ratios, along a continuum from fresh water through estuarine, coastal, and marine systems. Although phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems, the effects of atmospheric nitrogen and its contribution to acidification of fresh waters can be detrimental. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season, but nitrogen is generally considered the primary limiting nutrient for phytoplankton biomass accumulation. There are well-established, but nonlinear, positive relationships among nitrogen and phosphorus flux, phytoplankton primary production, and fisheries yield. There are thresholds, however, where the load of nutrients to estuarine, coastal and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.  相似文献   

18.
Sun G  Austin D 《Chemosphere》2007,68(6):1120-1128
A mass-balance study was carried out to investigate the transformation of nitrogenous pollutants in vertical flow wetlands. Landfill leachate containing low BOD, but a high concentration of ammonia, was treated in four wetland columns under predominately aerobic conditions. Influent total nitrogen in the leachate consisted mainly of ammonia with less than 1% nitrate and nitrite, and negligible organic nitrogen. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (<12%). Net nitrogen loss under study conditions was unexpected. Correlations between pH, nitrite and nitrate concentrations indicated the removal of nitrogen under study conditions did not follow the conventional, simplistic, chemistry of autotrophic nitrification. Through mass-balance analysis, it was found that CANON (Completely Autotrophic Nitrogen-removal Over Nitrite) was responsible for the transformation of nitrogen into gaseous form, thereby causing the loss of nitrogen mass. The results show that CANON can be native to aerobic engineered wetland systems treating wastewater that contains high ammonia and low BOD.  相似文献   

19.
Because estuaries and coastal regions are particularly susceptible to nutrient over-enrichment due to their close proximity to source-rich regions, a goal of the BRACE study was to improve estimates of nitrogen air/sea transfer rates in the Tampa Bay Estuary. Our objective was to critically evaluate two air/sea gas exchange models to determine their efficacy for use in a coastal region, with the ultimate goal of improving nitrogen exchange estimates in Tampa Bay. We used meteorological data and oceanographic parameters collected hourly at an instrumented tower located in Middle Tampa Bay, Florida. The data was used to determine the friction velocity and the turbulent flux of heat and moisture across the air/sea interface and then compared with modeled parameters at the same offshore site. On average both models underpredicted sensible heat flux and there was considerable scatter in the data during stable conditions, indicating that nitrogen gas exchange rates may also be underestimated. Model improvement, however, was observed with friction velocity comparisons. Model inter-comparisons of sensible heat flux and friction velocity suggest excellent agreement between the TOGA COARE and the NOAA Buoy models, but model estimated heat transfer coefficients and latent heat fluxes did not agree as well. Based on our analysis, we conclude that both models are suitable for use in a coastal environment to estimate nitrogen air/sea gas exchange, although the NOAA Buoy model requires fewer meteorological inputs. However, if the purpose is to conduct more sophisticated microscale modeling of air/sea interactions, we recommend the TOGA COARE model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号