首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is proposed to provide a simple, yet quantitatively valid perspective for the extent of soil (and lake) acidification to be expected for chemically and biologically active soils under the threat of acid precipitation. The model attempts to predict the acid (H+ + Al3+ + Fe3+) and base (Na+ + K+ + Mg2+ + Ca2+) cation losses from the soil, calculated from the rate and amount of acid cation retention when the rate of acid cation input is constant. It is assumed that the total amount of acidity retained by the soil is limited and qualitatively follows a Freundlich-type “absorption” isotherm. Required input information for the model includes (i) the total amounts of acid and base cations received by the soil via precipitation and weathering (minus normal leaching losses), (ii) the exchangeable base cation content and total number of cation exchange sites of the soil prior to the onset of acid precipitation.  相似文献   

2.
3.
Nineteen years (1980–1998) of precipitation chemistry data from a site in Alaska are examined for trends using a least squares general linear model. The annual concentrations of SO2– 4 show a significant decreasing trend at 0.001 level and the annual change in concentration is —0.012mg 1–1 yr–1. The annual concentrations of NO 3 show an increasing tendency non‐significant. The annual base cation concentrations show a clear significant decreasing trend at 0.001 level and the decrease is —0.009mg 1–1 yr–1. Ca2+ concentrations exhibit a significant decreasing trend at 0.001 level and the annual change of concentration is —0.003 mg 1–1 yr–1. Mg2+ and Na+ concentrations show a significant decreasing trend at 0.01 level and the annual change is —0.001 mg1–1 yr–1 for Mg2+ and —0.004 mg1–1 yr–1 for Na+. K+ concentrations are characterised by a decreasing trend, significant at 0.05 level. K+ concentrations have decreased —0.002mg1–1 yr–1. The strongest rates of concentration decline for base cations, Ca2+, Mg2+, K+ and Na+ occurred in fall and winter season. The annual values of pH show a decreasing trend non‐significant. The values of pH oscillate between 5.1 and 5.6 during the period considered.  相似文献   

4.
A heteropolyacid Zr(IV) tungstate-based cation exchanger has been synthesized. An amorphous sample, prepared at pH 1.2 and having a Na+ ion exchange capacity of 0.92?meq?g?1, was selected for further studies. Its physicochemical properties were determined using Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric, and scanning electron studies. To understand the cation exchange behavior of the material, distribution coefficients (K d) for metal ions in various solvent systems were determined. Some important binary separations of metal ions, namely Mg2+–Bi3+, Cd2+–Bi3+, Fe3+–Bi3+, Th4+–Bi3+, and Fe3+–Zn2+, were achieved on such columns. The practical utility of these separations was demonstrated by separating Fe3+ and Zn2+ ions quantitatively in commercial pharmaceutical formulation. The cation exchanger has been successfully applied also for the treatment of industrial wastewater and a synthetic mixture. All the results suggests that Zr(IV) tungstate has excellent potential for the removal of metals from aqueous systems using packed columns of this material.  相似文献   

5.
Al3+-bentonite clay (Alum-bent) was prepared by ion exchange of base cations on the matrices of bentonite clay. Intercalation of bentonite clay with Al3+ was performed in batch experiments. Parameters optimized include time, dosage, and Al3+ concentration. Physicochemical characterization of raw and modified bentonite clay was done by X-ray fluorescence, X-ray diffraction, energy dispersive X-ray spectrometry attached to scanning electron microscopy, Brunauer–Emmett–Teller analysis, cation exchange capacity (CEC) by ammonium acetate method, and pHpzc by solid addition method. Chemical constituents of water were determined by atomic absorption spectrometry (AAS), ion selective electrode (Crison 6955 Fluoride selective electrode) and a Crison multimeter probe. For fluoride removal, the effect of contact time, adsorbent dosage, adsorbate concentration, and pH were evaluated in batch procedures. The adsorption capacity of fluoride by modified bentonite clay was observed to be 5.7 mg g?1 at (26 ± 2) °C room temperature. Maximum adsorption of fluoride was optimum at 30 min, 1 g of dosage, 60 mg L?1 of adsorbate concentration, pH 2–12, and 1:100 solid/liquid (S/L) ratios. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order model than pseudo first order. Adsorption data fitted well to both the Langmuir and Freundlich adsorption isotherms, hence, confirming monolayer and multilayer adsorption. Alum-bent showed good stability in removing fluoride from ground water to below the prescribed limit as stipulated by World Health Organization. As such, it can be concluded that Alum-bent is a potential defluoridation adsorbent which can be applied in fabrication of point of use devices for defluoridation of fluoride-rich water in rural areas of South Africa and other developing countries. Based on that, this comparative study proves that Alum-bent is a promising adsorbent with a high adsorption capacity for fluoride and can be a substitute for conventional defluoridation methods.  相似文献   

6.
Previous studies have demonstrated that cadmium can induce biochemical and physiological changes in yeast Saccharomyces cerevisiae. However, studies on the influence of cadmium on the ion balance in the cell and the interaction between cadmium and other ions are still relatively few in number. By using inductively coupled plasma-atomic emission spectrometry, the contents of some cations, including Zn2+, Ca2+, Fe3+, Cu2+, Mg2+, K+, and Na+ were measured. The data showed that the levels of Zn2+ and Fe3+ were increased, while those of Cu2+, K+, and Na+ were decreased after cadmium treatment. Afterwards, using the drop test assay, the interactions between cadmium and the selected ions were investigated. The results suggested that the cytotoxicity of cadmium could be attributable to the interference of cadmium with the intracellular cation homoeostasis. Calcium channel transporter Cch1 participates in the intracellular uptake of cadmium. Additionally, Zn2+, Ca2+, Fe3+, Mg2+, and K+ can rescue the toxic effect of cadmium in yeast.  相似文献   

7.
The lethal effects of aluminum ion (Al3+) in tilapia (Oreochromis niloticus) raised in concrete tanks were investigated. Tilapias were fed daily with commercial feed enriched with known concentrations of Al3+ and analyzed by differential pulse anodic stripping voltammetry (DPASV). The concentrations of Al3+ in feces, water, muscle tissue, viscera, and heads were determined every 3 months for a period of 365 days. The Tilapia head was the most affected tissue by Al3+. In general, Al3+ bioaccumulation reached the lethal dose (LD50) after 335 days of experiment as follows: 34.9?mg?kg?1 (muscle tissue), 88.2?mg?kg?1 (viscera), and 126.9?mg?kg?1 (head without gills). After determining Cu2+, Zn2+, and Ca2+ by absorption spectrometry, a decrease in the Ca2+ concentration was noted in the head during the experimental period. These observations were associated with the occurrence of a decalcification in the bone tissue in the presence of Al3+. In contrast, it was found that Zn2+ ions may act as a protective agent against Al3+-induced contamination.  相似文献   

8.
In vitro effects of Pb2+, the pyrethroid insecticides cypermethrin, fenvalerate and the syner‐gist piperonyl butoxide on sodium‐potassium‐activated adenosine triphosphatase (Na,K‐ATPase) from dog kidney were determined. Pb2+ with an estimated IC50 value of 5.2 μM was found to be a potent inhibitor of Na,K‐ATPase activity, whereas Na,K‐ATPase was less sensitive to the pyrethroids tested and piperonyl butoxide. Investigation with circular dichroism (CD) spec‐troscopy showed that inhibition occurs through conformational changes of the α‐subunit of the enzyme. The kinetic characteristics of inhibition of Na,K‐ATPase with varying substrate (ATP) concentrations as well as with varying Na+ concentrations exhibited a competitive type of inhibition with Pb2+ in the μM range. With Pb2+ alone in the enzyme assay no conformational changes of the protein could be observed which confirmed the assumption that Pb2+ can bind to the Na+ binding site of the α‐subunit. Uncompetitive type of inhibition occurred with varied K+ concentrations demonstrating that this cation binding site is not affected directly by Pb2+.

Complete reversal of Pb2+ by DTT confirms that a possible target for interaction of this heavy metal ion with Na, K‐ATPase are specific SH groups.

Synergistic effects could only be determined with higher Pb2+ concentrations of 3, 5 and 7 μM plus piperonyl butoxide while all other combinations with this heavy metal plus organic substances where of the additive type. With CD spectroscopy also only additive effects were observed. These results demonstrate that higher concentrations of piperonyl butoxide favor the binding of Pb2+ to the Na+ binding site by conformational changes of the protein.  相似文献   

9.
The REDEQL.EPAK computer model was used to study speciation of Pb, Cd, Zn, and Ca in leachates from dolomitic Pb mine tailings. By allowing or disallowing precipitation of solids and equilibration of the modelled leachate with atmospheric C02, comparison of fresh and aged leachates was made. The effects of treatment of the tailings with phosphate containing fertilizer were studied through addition of P04 3– to the modelled solution. Equilibrium constants pertaining to metal ion-humic acid complexation were added to the thermodynamic data base of the model in order to study the effects of decaying plant material on tailings leachate.Initial leachate of the tailings is found to be supersaturated with Cd and Zn. Non-complexed (free) Cd2+ and Zn2+ is predicted to comprise most of the soluble form of these metals in the leachate; Pb is predicted to be present largely as PbCO3 ion pair. Equilibration of the leachate with the atmosphere is predicted to lead to extensive precipitation of CdCO3 and ZnSiO3. Precipitation of Pb5(PO4)3Cl is predicted at high PO4 3– concentration and at low pH. Complexation by the humic acid is predicted to compete effectively with other ligands in the leachate for the metal ions. The results are compared with experimental findings.  相似文献   

10.
The -N-acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) from prawn (Penaeus vannamei) was purified by extraction with 30% ethanol solution and ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32) columns. The purified enzyme determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE. The specific activity of the purified enzyme was 1,560 U mg–1. Enzyme molecular weight was determined to be 105,000 Da; it contained two subunits of the same mass (45,000 Da). The pI value was calculated to be 4.8 by isoelectric focusing. The optimum pH and optimum temperature of the enzyme for the hydrolysis of pNP--D-GlcNAc (enzyme substrate) were determined to be pH 5.2 and 45°C, respectively. The behavior of the enzyme during hydrolysis of pNP--D-GlcNAc followed Michaelis–Menten kinetics, with Km=0.254 mM and Vm=9.438 M min–1, at pH 5.2 and 37°C. The stability of the enzyme was investigated, and the results showed that the enzyme was stable in a pH range from 4.2 to 10.0 and at temperatures <40°C. The effects of metal ions on the enzyme were also studied. Li+, Na+ and K+ had no influence on enzyme activity. Mg2+, Ca2+ and Mn2+ activated the enzyme, while Ba2+, Zn2+, Co2+, Cd2+, Hg2+, Pb2+ Cu2+, Fe3+ and Al3+ showed various degrees of inhibitory effects on the enzyme.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

11.
Samples have been collected from major horizons of 34 podzol profiles distributed throughout Scotland, all developed from granite or granitic tills and under Calluna moorland. the pH in water and calcium chloride pastes, exchangeable cations and cation exchange capacity, and extractable aluminium of the soils collected have been measured, and the results studied in relation to reported atmospheric deposition of H+, non-marine sulphur and nitrate. for all horizons, significant positive correlations were found between soil pH and rainfall mean pH, as might be expected when the critical load of H+ deposition is exceeded. Acidifying pollutant deposition also apparently increased soil extractable aluminium concentrations in the B and C horizons. However, exchangeable base cation concentrations tended to increase, rather than decrease, with increasing precipitation acidity. This effect was attributed to increases in biogeochemical cycling of base cations, increases in leaching inputs of base cations from overlying A/E horizon soils, and increases in the inputs of base cations leached from upslope. the results suggest that the simple steady state mass approach to the quantification of critical loads, as often applied, may be an oversimplification.  相似文献   

12.
Discharge of wastewater containing nitrogen and phosphate can cause eutrophication. Therefore, the development of an efficient material for the immobilization of the nutrients is important. In this study, a low calcium fly ash and high calcium fly ash were converted into zeolite using the hydrothermal method. The removal of ammonium and phosphate that coexist in aqueous solution by the synthesized zeolites were studied. The results showed that zeolitized fly ash could efficiently eliminate ammonium and phosphate at the same time. Saturation of zeolite with Ca2+ rather than Na+ favored the removal of both ammonium and phosphate because the cation exchange reaction by the NH4 + resulted in the release of Ca2+ into the solution and precipitation of Ca2+ with PO4 3? followed. An increase in the temperature elevated the immobilization of phosphate whereas it abated the removal of ammonium. Nearly 60% removal efficiency for ammonium was achieved in the neutral pH range from 5.5 to 10.5, while the increase or decrease in pH out of the neutral range lowered the adsorption. In contrast, the removal of phosphate approached 100% at a pH lower than 5.0 or higher than 9.0, and less phosphate was immobilized at neutral pH. However, there was still a narrow pH range from 9.0 to 10.5 favoring the removal of both ammonium and phosphate. It was concluded that the removal of ammonium was caused by cation exchange; the contribution of NH3 volatilization to immobilization at alkaline conditions (up to pH level of 11.4) was limited. With respect to phosphate immobilization, the mechanism was mainly the formation of precipitate as Ca3(PO4)2 within the basic pH range or as FePO4 and AlPO4 within acidic pH range.  相似文献   

13.
Thermodynamic and kinetic studies on the adsorption of Cs+ and Sr2+ by Na-exchanged clinoptilolite-rich zeolite rock from Akita (Northern Japan) were performed for the purpose of nuclear waste treatment. The thermodynamic parameters such as selectivity coefficient, thermodynamic equilibrium constant, and standard free energy of exchange were evaluated. These values indicated that the selectivity order was determined as Cs+ > Na+ > Sr2+. In order to discuss the adsorption mechanism of Cs+ and Sr2+ onto Na-exchanged clinoptilolite, the effective diffusion coefficients were calculated and two kinetic models, pseudo-first-order and pseudo-second-order kinetic model, were tested. For all systems studied, chemisorption seems significant in the rate-controlling step, and the pseudo-second-order kinetic model provided the best correlation of the experimental data.  相似文献   

14.
Microbial communities (phospholipid fatty acid pattern, bacterial growing strategies, eco-physiological index (EPI) and total bacteria counts, as a number of heterotrophic cuhurable bacteria), substrate-induced respiration (SIR), and nitrogen mineralization were studied in three Mediterranean soils at three different depth levels (A, B and C). Soils were experimentally treated with a final concentration of 1000 ppm of trace metals (Cu2+, Zn2+, Al3+, Fe2+, Pb2+, Ni2+, Mn2+, Cr3+ and Cd2+). Soils were stored in 571 plastic containers for one year, and watered with 1001 during this period. Leachate was recovered through a bottom tap. Samples of the three depths were studied. Soil microbial communities showed different effects to other studies presented in the literature, but carried out on non-Mediterranean soils. Dramatic differences were found between treated soils and untreated ones, but not between soils or horizons. the treated soil displayed a decrease in CFUs, SIR N-mineralization and EPI together with a dominance of r-growing strategists. the relative moles percent of several PLFAs, especially 15:0, 16: 1ω7, cy17: 0, br18:0 and 18: 1ω7 decreased because of the pollution of soils, whereas 10Me16, 18:2ω6, cy19:0, i16:0 and br17:0 showed higher values than in untreated soils.  相似文献   

15.
A highly sensitive catalytic procedure for the determination of ultratrace chromium(VI) was developed based on its catalytic effect on the oxidation of gallocyanine by hydrogen peroxide in hexamine‐hydrochloric acid buffer solution. The reaction was followed spectrophotometrically by measuring the rate of change in the absorbance at 620 nm. The apparent active energy of the catalytic reaction is 6.84 kJ . mol‐1. The calibration graph is linear for 0–150 ng.ml‐1, and the detection limit is 0.8 ng.ml‐1. Most foreign ions have no interfering effect on the determination of chromium(VI) except for Al3+, Cu2+, Fe3+and Fe2+. The interference of Al3+ is eliminated by masking with F, and those of Cu2+, Fe3+ and Fe2+ are eliminated by adding appropriate amount of EDTA. The present procedure had been used for the determination of trace chromium(VI) in lake water, mine water and electroplating wastewater, and the results were satisfactory.  相似文献   

16.
Crandallite (Ca,Sr) Al3 (PO4)2 (OH)5 · H2O crystallizes in the alunitecrystal lattice. Because of its open structure, the cations Ca2+, Sr2+, and Al3+ can be replaced by various elements depending on their diadochial properties; the element entering into the crystal network thus becomes immobilized. Artificial amorphous crandallite has been shown to eliminate the heavy metal ions: Pb2+>>Cu2+>Hg2+>>Cd2+ from contamined water in the presence of lateritic phosphates. Pb2+ could be removed nearly quantitatively in all cases.  相似文献   

17.
Calluna vulgaris/peat microcosms have been used in an outdoor simulated acid rain experiment to test a series of hypotheses about sulphuric acid deposition effects upon the growth of Calluna on peat soil, namely: (1) Initially, enhanced acid input will enhance base cation and ammonium concentrations in soil solution. This may enhance uptake of these species, increasing foliar concentrations of base cations and nitrogen, and possibly foliar chlorophyll a and b concentrations. (2) If changes are induced in nutritional status, they may influence plant growth. (3) in the longer term, enhanced ammonium and base cation solubility occurring as a consequence of cation exchange reactions will lead, especially in winter months, to enhanced leaching losses. Hence any positive effects upon plant nutrition will not be sustainable. (4) the peat will acidify significantly over two years, in the shorter term primarily as a consequence of an enhanced mobile anion effect. (5) Acidification may reduce the rate of mineralisation of organic phosphorus and, in a phosphorus-deficient peat soil, this may lead to reduced foliar phosphate concentration and possibly induce phosphorus deficiency.

Most of these hypotheses were supported to some extent by the experimental results. the peat soil solution pH fell immediately in response to the acid treatments, and longer-term acidification continued progressively over the two years of the experiment. in the first year, the treatments significantly influenced the calcium, magnesium, phosphorus and nitrogen status of the leaves from Calluna new shoots, whereas in the second year calcium, potassium and phosphorus were influenced. However, in both years foliar phosphate concentration was enhanced, rather than reduced, in response to increased acid load. Foliar carbon and nitrogen concentrations fell with increasing acidity of  相似文献   

18.
A laboratory batch experimental study has been carried out to evaluate the adsorption capacity of selected metal species in acid mine drainage (AMD) by bentonite clay. Bentonite clay was mixed with simulated AMD at specific solid–liquid (S/L) ratios and agitated in a reciprocating shaker and adsorption of selected toxic metals assessed over time. Cation exchange capacity varied from 1140 to 1290 meq kg?1. Contact of AMD with bentonite leads to increase in pH and a possible reduction in electrical conductivity and total dissolved solids. At constant agitation time of 60 min, the pH increased with dosage of bentonite. Removal of Mn2+, Al 3+, and Fe3+ was observed to be greatest at 60 min of agitation. Bentonite clay exhibits high adsorption for Al3+ and Fe3+ at concentration less than 300 mg L?1, while the capacity for Mn2+ was observed to be lower. Adsorption capacity for SO42? was low with a great percentage of the SO42? remaining in solution. Adsorption capacity of bentonite with more complex formulated AMD and gold tailing leachates was low for Fe3+, Al3+, and Mn2+. This indicates that optimum adsorption of bentonite clay is dependent on the chemistry of the AMD and its application might be site specific.  相似文献   

19.
A field project encompassing wet-only rainwater sampling was initiated as a bilateral Fiji/Australia activity. Normally, biweekly samples were collected, using a wet-only rainwater sampler, and analysed for H+, Na+, K+, Mg2+, NH4 +, Cl, NO3 , SO4 2–, PO4 3-, methane sulphonic acid, oxalic acid, formic acid and acetic acid. The pH of the rainwater ranged between 5.730 and 4.480 with an average value of 5.176, slightly lower than the pH of unpolluted rainwater saturated with atmospheric CO2(pH = 5.650). Na+and Clwere the major ions with average concentrations of 98.15 M and 109.57 M respectively. There is an excellent correlation between the cation sum (average 147.71 eq L-1) and the anion sum (average 142.12 eq L-1) attesting to the quality of the data generated. This paper presents the detailed results of the study for a relatively clean remote island site in Suva, Fiji, latitude 18° 09 S, longitude 178° 27 E, height 6 m, and outlines prospects for further work.  相似文献   

20.
一些基于重金属形态的生物毒性机理模型被广泛应用于水体和陆生生态系统,例如:自由离子活度模型(FIAM)、生物配体模型(BLM)和生物膜电势斯特恩双电层模型(GCSM),但不同模型的应用效果之间还缺乏系统比较。本研究选取小麦作为受试生物,采用水培实验进行了镉对小麦根伸长的毒性测试,通过数据分析软件对实验数据进行非线性拟合,分别建立了3种模型,并从根毒性、根表面吸附镉和根中富集镉3个方面对3个模型的预测能力进行了比较。除此之外,选取苹果酸和柠檬酸2种有机配体,研究了配体对镉生物毒性的影响。结果表明,Ca~(2+)和H~+对Cd的根毒性存在竞争效应,而Mg~(2+)、K~+和Na~+未发现竞争效应。由于BLM模型同时考虑了镉的自由离子态浓度和竞争离子的影响,在预测镉对杨麦13号根毒性和生物体内富集量时效果最好。而FIAM和GCSM模型由于计算中仅考虑了离子活度的影响,缺乏对竞争离子保护效应的考虑,因此预测效果相对较差;此外,Cd对小麦根毒性的主要受扩散过程控制,而非跨膜过程,这可能也是FIAM模型和GCSM模型预测不佳的原因之一。同时结果还发现有机配体存在时尽管降低了溶液中镉的离子活度,但未显著影响镉毒性,进一步证明了扩散过程对Cd毒性的影响。以上结果为评价和预测镉的陆生生态毒性提供了基础数据和模型依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号