首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

2.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

3.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

4.
Cladophora rupestris is a perennial filamentous macroalga belonging to the Chlorophyta. It is widely distributed on both sides of the northern Atlantic Ocean and penetrates into the brackish Baltic Sea down to ca. 4 psu salinity. In this paper we present evidence for genetic differentiation of a Baltic form of this marine alga. We assessed genetic structure within and among 11 populations ranging along a salinity gradient from the Norwegian coast to the northern Baltic Sea proper. Samples of 328 individuals were studied using starch-gel protein electrophoresis to evaluate genetic variability and interpopulation differentiation based on allozymes. Of 11 loci examined, only one was polymorphic. For this locus, encoding superoxide dismutase (SOD-3), a total of seven alleles were distinguished. We found two genetically differentiated groups of populations of C. rupestris, one Baltic Sea group and one North Sea group, with a distinct border in the southern Kattegat near the entrance to the Baltic Sea. The genetic differentiation for SOD-3, expressed as pairwise FST values between the populations, was generally higher within the Baltic Sea group (0.10-0.43) than within the North Sea group (0.05-0.10); in the latter group also fewer pairs of populations differed significantly. Pairs of populations from different groups had the highest FST values (0.20-0.60). Hierarchical analysis of variance showed that 29.6% of the total variation in the SOD-3 locus was explained by variation between the two groups, while only 4.2% was explained by variation among the populations within the groups. The remaining variation (66.2%) was found within the populations.  相似文献   

5.
Allozyme variation at six polymorphic loci was examined in foliose dictyoceratid sponges from isolated reefs in the western Coral Sea. Four major genetic groups corresponding to the species Phyllospongia lamellosa, P. alcicornis, Carterospongia flabellifera and Collospongia auris were examined. A further two rare morphotypes from individual reefs formed genetic outliers to the P. lamellosa group, and may represent further taxa related to P. lamellosa. Gene frequencies in individual reef populations were largely in Hardy-Weinberg equilibrium, suggesting that random mating occurred in local populations of all four common species. Genetic variability was high and observed heterozygosities within populations ranged from 0.13 to 0.40. All four taxa showed significant genetic differentiation among populations (F ST=0.05 to 0.36). Genetic distances (Nei's D) among populations within species ranged from 0 to 0.723 and increased with increasing geographical separation. There was evidence that genetic differentiation between populations to the north and to the south of the southern limit of the South Equatorial Current (SEC) divergence was greater than expected on the basis of their geographical separation. The SEC divergence may form a partial barrier to gene flow among populations of these ecologically important sponges on the submerged Queensland Plateau. Levels of migration among populations of three of the species was less than those required to prevent divergence of the populations through genetic drift (Nm<1). Restricted migration among populations may provide a mechanism to explain the occurrence of highly divergent populations of dictyoceratid sponges whose specific identity is not clear, and may allow them additionally to develop partial reproduction isolation from other populations.  相似文献   

6.
Spatial and temporal population genetic structures of the common sole, Solea solea, were studied in Northeastern Atlantic and Mediterranean Sea populations, using three polymorphic exon-primed intron-crossing (EPIC) markers. Results demonstrated significant multilocus differentiation among Eastern Mediterranean and a group composed by Western Mediterranean and Atlantic populations (θ = 0.150, P < 0.001), but also suggested unrecorded genetic differentiation of the Adriatic Sea population. No pattern of isolation-by-distance was recorded across the range covered by sampling, from the Kattegat to the Aegean Sea. Conversely to genetically structured Mediterranean populations, Atlantic populations ranging from Denmark to Portugal could be considered as representative of the same panmictic unit (θ = 0.009, not significant). Results further demonstrated stability of multilocus genetic structure among temporarily replicated cohort samples [0+, 1+, subadults] from several coastal and estuarine locations from Bay of Biscay, excepted for the amylase locus Am2B3-2 at one location (Pertuis d’Antioche). Despite coherence of such observed patterns of multilocus differentiation with previous allozymic surveys in sole, and with patterns generally obtained for other marine fish species, single-locus results from EPICs indicated divergent coalescence schemes supporting a complex response to ecology and history of sole’s populations. Results stress the use of nuclear genes such as EPIC markers to investigate population structure, but also historical, demographic, and possibly selective processes in marine fishes.  相似文献   

7.
Variations in the relative contributions of gene flow and spatial and temporal variation in recruitment are considered the major determinants of population genetic structure in marine organisms. Such variation can be assessed through repeated measures of the genetic structure of a species over time. To test the relative importance of these two phenomena, temporal variation in genetic composition was measured in the limpet Cellana grata, among four annual cohorts over 10 years at four rocky shores in Hong Kong. A total of 408 limpets, comprising individuals from 1998, 1999, 2006 and 2007 cohorts were screened for genetic variation using five microsatellite loci. Minor but significant genetic differentiation was detected among samples from the 1998/1999 collection (F ST = 0.0023), but there was no significant differentiation among the 2006/2007 collection (F ST = 0.0008). Partitioning of genetic variation among shores was also significant in 1998/1999 but not in the 2006/2007 collection, although there was no correlation between genetic and geographic distances. There was no significant difference between collections made in 1998/1999 and 2006/2007. This lack of clear structure implies a high level of gene flow, but differentiation with time may be the result of stochastic recruitment variation among shores. Estimates of effective population size were not high (599, 95% C.L. 352–11397), suggesting the potential susceptibility of the populations to genetic drift, although a significant bottleneck effect was not detected. These findings indicate that genetic structuring between populations of C. grata in space and time may result from spatio-temporal variation in recruitment, but the potential development of biologically significant differentiation is suppressed by a lack of consistency in recruitment variability and high connectivity among shores.  相似文献   

8.
Genetic variability and structuring of rabbitfish populations with contrasting life histories, Siganus argenteus and Siganus fuscescens were determined using allozyme analysis. A total of 13–14 polymorphic loci were examined from samples collected in 2002 and 2003 from eight reefs representing 25 populations north (Kuroshio Current) and south (Mindanao Current) of the bifurcation of the North Equatorial Current along the eastern Philippine coast. S. fuscescens populations (H OBS = 0.085) showed higher heterozygosity than S. argenteus (H OBS = 0.053), consistent with predictions of the neutral theory for demersal egg spawners compared to pelagic egg spawners. The generally lower genetic variability of Kuroshio populations may be due to greater environmental disturbance affecting larval mortality and recruitment success. There was no significant overall population genetic structuring for S. argenteus (F ST = 0.01485, P > 0.05) compared to S. fuscescens (F ST = 0.03275, P < 0.05). The latter species showed highly significant genetic structuring among Kuroshio and Mindanao Current populations in both 2002 and 2003 (F CT = 0.08120, P < 0.05; F CT = 0.07500, P < 0.05, respectively), as well as among populations within regions. This conforms to expectations of correlations between observed population genetic structure and life history features related to dispersal potential and gene flow. However, there were significant temporal (i.e., 2002 vs. 2003 samples) genetic variations for both S. fuscescens (F CT = 0.08542, P < 0.05) and S. argenteus (F CT = 0.06330, P < 0.05), which may reflect interannual variability in recruitment success. Differences in population spatial genetic patterns between the two reef fish species suggest that broad scale physical factors (e.g. NEC bifurcation) and regional environmental perturbations (e.g. incidence of typhoons) affect population genetic structure of sympatric congeneric species with different life histories differently. Finer scale ecological processes, which affect larval dispersal and recruitment (e.g., local hydrographic features, distribution of habitats), particularly in the Mindanao Current region, exert more influence on structuring populations of S. fuscescens.  相似文献   

9.
Understanding the evolutionary processes from recent demographic history is especially difficult for interstitial organisms due to their poorly known natural history. In this study, the genetic variation and population history of the four Ototyphlonemertes (Diesing in Sitz ber Math Nat Kl Akad Wiss Wien 46:413–416, 1863) species were evaluated from samples collected along the Brazilian coast (between 27°31′S and 13°00′W) in 2006. The mitochondrial region cytochrome c oxidase subunit 3 (COX3) is analyzed to assess the genetic variation of these dioecious species. Although these species have a sympatric distribution along the coast, our data suggest that their levels of differentiation and their demographic histories differ sharply. There is strong evidence of gene flow among demes in O. erneba and O. evelinae, and their level of structuring is much lower than for the other two species. Indeed, the COX3 fragment reveals cryptic lineages in O. lactea and O. parmula. The results seem to contradict the high genetic structuring and low intrapopulational variability expected with the ecological constriction and habitat discontinuity faced by these organisms, meaning that there might be gene flow among populations or their dispersal capability has been underestimated.  相似文献   

10.
The patchy distribution of rocky intertidal communities in the tropical eastern Pacific (TEP) may impose severe constraints on the genetic connectivity among populations of marine invertebrates associated with this habitat. In this study, we analyzed a portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene in two sympatric species of marine snails, Nerita scabricosta and Nerita funiculata, common inhabitants of the rocky intertidal from the Gulf of California (Sea of Cortez) and outer Pacific coast of the southern Baja California (Baja) peninsula to northern South America, to assess genetic connectivity among populations of each species. One of our aims was to determine whether the morphological, behavioral, and ecological differences observed among populations of both species throughout their range in the TEP corresponded to population genetic differences. In addition, we were interested in elucidating the demographic history of both species. We found no evidence of genetic structure throughout the Gulf of California and outer coast of the Baja peninsula region for either species. Comparisons between Gulf of California/Baja and Panama populations, however, showed significant genetic differentiation for N. scabricosta, but not for N. funiculata. The genetic differences between Mexican and Panamanian populations of N. scabricosta were consistent with previously reported ecological and behavioral differences for this species between these two distant regions. However, previously reported size differences between northern and central/southern Gulf of California individuals of N. scabricosta do not correspond with our findings of genetic connectivity among these populations. Results from neutrality tests (Tajima’s D and Fu’s F S), the mismatch distribution, and Bayesian skyline analyses suggested that both species have experienced dramatic population expansions dating to the Pleistocene.  相似文献   

11.
Surveys of genetic variation within cosmopolitan marine species often uncover deep divergences, indicating historical separation and potentially cryptic speciation. Based on broad geographic (coastal eastern North America, Gulf of Mexico, western Africa, Australia, and Hawaii) and temporal sampling (1991–2003), mitochondrial (control region [CR] and cytochrome oxidase I [COI]) and nuclear gene (lactate dehydrogenase A intron 6 [LDHA6]) variation among 76 individuals was used to test for cryptic speciation in the scalloped hammerhead, Sphyrna lewini (Griffith and Smith). CR and COI gene trees confirmed previous evidence of divergence between Atlantic and Indo-Pacific scalloped hammerhead populations; populations were reciprocally monophyletic. However, the between-basin divergence recorded in the mtDNA genome was not reflected in nuclear gene phylogenies; alleles for LDHA6 were shared between ocean basins, and Atlantic and Indo-Pacific populations were not reciprocally monophyletic. Unexpectedly, CR, COI, and LDHA6 gene trees recovered a deep phylogenetic partition within the Atlantic samples. For mtDNA haplotypes, which segregated by basin, average genetic distances were higher among Atlantic haplotypes (CR: D HKY=0.036, COI: D GTR=0.016) than among Indo-Pacific haplotypes (CR: D HKY=0.010, COI: D GTR=0.006) and approximated divergences between basins for CR (D HKY=0.036 within Atlantic; D HKY=0.042 between basins). Vertebral counts for eight specimens representing divergent lineages from the western north Atlantic were consistent with the genetic data. Coexistence of discrete lineages in the Atlantic, complete disequilibrium between nuclear and mitochondrial alleles within lineages and concordant partitions in genetic and morphological characters indicates reproductive isolation and thus the occurrence of a cryptic species of scalloped hammerhead in the western north Atlantic. Effective management of large coastal shark species should incorporate this important discovery and the inference from sampling that the cryptic scalloped hammerhead is less abundant than S. lewini, making it potentially more susceptible to fishery pressure.  相似文献   

12.
The genetic structure of populations of the corals Pocillopora damicornis and Acropora palifera was examined in three habitats at One Tree Island during March and April 1993, using electrophoretically detectable variation at six allozyme loci. There were significant genetic differences among populations of P. damicornis within each of the reef crest, lagoon and microatoll habitats. The level of differentiation among populations was similar in each of the habitats. Differences between populations of P. damicornis from lagoon and microatolls were no greater than that within habitats, but genetic differentiation of these from crest populations was much higher. There was no difference in the genetic composition of A. palifera populations within or between the lagoon and microatolls, the only habitats where this species was found. Both coral species had observed:expected (G O:GE) genotypic diversity rations >0.80, indicating predominantly sexual reproduction. These data, the high genotype diversity and general conformance of genotype frequencies to those expected under conditions of Hardy-Weinberg, suggested panmixis at each site. The high degree of sexual reproduction in the P. damicornis populations is unusual for a species where asexual reproduction has been the dominant mode of reproduction reported to date. Gene flow in both species was considerable between the lagoon and the closed microatolls. The genetic differences between populations of P. damicornis in these habitats and the reef crest may reflect the relative isolation of all populations within the closed One Tree Lagoon from those outside. However, local currents appear to offer effective means of dispersal between the habitats, suggesting that the genetic differences result from natural selection in the different environments within One Tree Lagoon and the reef crest.  相似文献   

13.
Genetic differentiation between North Sea and Baltic Sea Hediste diversicolor (O.F. Müller, 1776) (Polychaeta: Nereididae) populations was studied by allozyme electrophoresis on starch gel. Thirteen loci were analyzed in eight populations. The level of genetic variation was very low (mean H o = 0.000 to 0.015). Differentiation between H. diversicolor populations is quite high (F ST = 0.892) and reflected by three enzyme loci (MDH-I*, MDH-II*, IDH-I*). The reduced gene flow (N m<1) may be explained by the limited dispersal capacity of the species. Regardless of whether found in the North Sea or Baltic Sea, there appear to be two different genetic types which are parapatric or sympatric in some places. The two types hybridize at three localities, but no signs of hybridization have been found at one (Tallinn). Received: 26 June 1997 / Accepted: 10 September 1997  相似文献   

14.
Dascyllus aruanus were collected from 13 different locations in French Polynesia between 15 November 1990 and 15 February 1991 in order to examine larval dispersal on four spatial scales: within-feef, within-island, within-archipelago, among-archipelagoes. Average polymorphism was analysed by protein electrophoresis at two levels (P95=0.285 and P90=0.107) from 12 and 3 polymorphic loci, respectively. Spatial genetic variation displayed a low level of differentiation between populations among archipelagoes, and homogeneity at lower spatial scales. Two hypotheses are proposed to explain the genetic structure observed. The first suggests substantial gene flow between the islands during the pelagic larval phase, the second that the absence of differentiation is the result of recent colonisation. Genetic variation amongst size classes showed a significant heterozygote deficiencies at two loci (PGM * and EST-2 *) in the smallest size class. This suggests a cyclic selection which affects larvae and adults differentially. The data revealed little differentiation among populations at the different localities, despite the short larval duration of D. aruanus; this suggests that larval duration is not the main factor presently affecting genetic structure in an insular model. Correspondence to: S. Planes at the Université de Perpignan  相似文献   

15.
Electrophoretic studies of gene-enzyme variation in the littoral talitrids Talitrus saltator (Montagu) and Talorchestia deshayesii (Audouin) were undertaken to estimate the amount of divergence among geographically separated populations. Samples of both species were taken from sandy beaches over a transect of approximately 3 500 km along the coast of the European continent including Baltic, North Sea and Atlantic locations. A total of 22 T. saltator and 15 T. deshayesii populations were analysed for genetic variation at various enzyme loci. Both amphipods revealed relatively low levels of polymorphism and heterozygosity. Among the loci studied, phosphoglucose isomerase (Pgi) and phosphoglucomutase (Pgm) were highly polymorphic. Patterns of micro- and macrogeographic variation in terms of distributions of allele frequencies at these particular loci are compared. Interpopulation allozymic variation was shown to be lower in T. deshayesii than in T. saltator. As demonstrated by T. saltator populations sampled in coastal sites ranging from Denmark to western France, clinal variation in frequencies of two alleles became evident at the PGI locus, exhibiting a steady increase in the level of polymorphism with decreasing latitudes. It is argued that limited gene flow and, to some extent, random genetic drift may account for the gene pool structure of the talitrid species investigated.  相似文献   

16.
Many species of marine fish are typified by large population sizes, strong migratory behavior, high fecundity, and pelagic eggs and larvae that are passively transported by ocean currents, all features that tend to increase gene flow, and hence reduce genetic partitioning, among localized populations. The plaice, Pleuronectes platessa, is a commercially important demersal species that exhibits all of these characteristics. We analyzed genetic variation at eight microsatellite loci in samples of spawning adults (N = 348) from the coasts of Ireland, Iceland, and, for the first time, from the Baltic Sea. Significant differentiation was observed between Iceland and Irish and Baltic Sea samples. However, there were no genetic differences between Irish and Baltic Sea samples, which contrast with the significant differentiation reported between Baltic Sea and North Sea/Atlantic populations of other flatfish species. To increase the data set, we carried out a cross-calibration exercise, allowing us to perform a joint analysis of data with an earlier study on adult and juvenile plaice (N = 480) collected over a broad geographic range, using six microsatellite loci in common to the two studies. Significant differentiation was observed between fish collected at the northern (Iceland, Faeroes, Norway) and southern (Bay of Biscay) parts of the species range. In contrast, the results showed little evidence of genetic structuring over much of the continental shelf of Europe. We believe that bathymetric and hydrographic barriers are the major factors shaping genetic structure, while lack of structure over much of the European continental shelf may be explained by a combination of past historical events, population structure, and dynamics of the species.  相似文献   

17.
The milkfish, Chanos chanos (Forsskål, 1775) is a pelagic, monotypic gonorhynchiform widely distributed in the tropical Indo-Pacific. This study evaluates temporal variability of milkfish samples from the Philippine archipelago, and spatial variability at two geographic scales based on restriction fragment length polymorphism (RFLP) analysis of a portion of the mitochondrial control region. High levels of genetic diversity characterize the milkfish control region (mean h=0.908, =1.59%), with 74 haplotypes detected among the 367 fish analyzed. For temporal analysis of Philippine samples, milkfish were collected over 2 years from three sites (inter-annual variation), and sampled twice within a year during different seasons at four sites (intra-annual variation). No significant temporal variability was detected between or within years. Significant spatial differentiation among the Philippine samples was observed (FST=0.006, P<0.05), with two northeastern samples, Claveria and Dingalan, found to be genetically distinct. However, an hierarchical analysis of molecular variance (AMOVA), where samples were grouped into four geographic regions, revealed very low levels of genetic partitioning, with less than 1% of the total variation attributed to between-region differences, and lack of genetic structure. Nonetheless, the existence of putative northeastern Philippine populations is not discounted. Strong genetic structure across broad geographical scales was revealed by AMOVA, with 11% of the molecular variance based on haplotype frequencies allocated between three distinct groups: Indian Ocean, west Pacific (Philippines) and north central Pacific (Hawaii) The broad-scale genetic structure points to limited gene flow among disjunct Indo-Pacific populations.Communicated by T. Ikeda, Hakodate  相似文献   

18.
We examined phylogenetic relationships among three Bathymodiolus species in Japanese waters and Bathymodiolus spp. from the Manus Basin by two different approaches. Two-dimensional gel electrophoresis allowed us to compare 263–407 (average=318) proteins, giving comprehensive information on genetic distances among the species. The neighbor-joining tree presented two clusters: (1) B. japonicus and B. platifrons and (2) B. septemdierum and B. sp. Members of the first cluster contain methanotrophic endosymbiotic bacteria and members of the second cluster contain thioautotrophic endosymbionts. DNA sequencing of a fragment (415 bp) of mitochondrial cytochrome c oxidase subunit I (COI) provided a neighbor-joining tree with the same topology as that derived from protein analysis. Inspection of intraspecific variation in COI in B. japonicus and B. platifrons revealed no genetic differentiation between mussel populations of either species from cold-water seeps versus hydrothermal vents, suggesting high adaptability of these Bathymodiolus species to deep-sea chemosynthetic environments. Our results indicated genetic exchanges between mussels from distant localities, suggesting that a limited dispersal capability of the larvae is not the likely factor leading to speciation events in these Bathymodiolus species.Communicated by T. Ikeda, Hakodate  相似文献   

19.
To test the importance of special environments for local genetic subdivision in species with a larval phase, we examined allozyme variation among populations of the intertidal snail Austrocochlea constricta, in 18 tidal ponds in the Houtman Abrolhos Islands, Western Australia. Levels of genetic divergence between pond populations were correlated with those of parallel analyses among adjacent shore populations. However, divergence among the isolated ponds, which lack surface connection to the sea, were generally substantially higher, with an overall FST of 0.408, compared with 0.274 among the shore sites. The pond populations had less genetic variation than their shore counterparts, and the reduction of heterozygosity was correlated with the isolation of the pond population, as measured by FST. Both the degree of isolation and the reduction of heterozygosity were greater in deeper ponds, where snails can produce a local pool of larvae. In contrast, ponds that dry out frequently are less likely to allow production of local recruits, and these appear to be better connected genetically to adjacent shore populations. These patterns contrast sharply with those previously documented at the same sites for the direct-developing snail Bembicium vittatum, which shows greater isolation in ponds that are often dry. The comparison between the two species shows significant interaction between intrinsic and extrinsic impediments to gene flow, and highlights the importance of characteristics of the life history in determining which circumstances favour isolation of local populations.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00277-005-1553-5.Communicated by G.F. Humphrey, Sydney  相似文献   

20.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号