首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 1961, control over water-supply interference problems in the Province of Ontario has been provided under The Ontario Water Resources Commission Act. A section of The Act requires persons taking more than 10,000 imperial gallons per day of water for purposes other than domestic, stock or fire-fighting to have a permit and to take the water in accordance with specified terms and conditions. Construction of some new wells, sewers, and roads to meet the needs of urban development has caused interference with both ground- and surface-water supplies. In cases of serious interference, the Commission has required that steps be taken to restore water supplies or prevent continued interference. Two cases are described where municipalities in the Toronto area restored supplies to overcome serious interference with several private wells and streamflow during testing and operation of a 500-imperial gpm municipal well adjacent to a normally effluent stream, and varying degrees of interference with private wells caused by dewatering at rates up to 2000-imperial gpm for the installation of a trunk sewer.  相似文献   

2.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

3.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   

4.
ABSTRACT: Rush Creek, the principal tributary to Mono Lake, has undergone profound hydrologic modifications as a result of flow regulation for hydroelectric generation and irrigation, diversions for irrigated agriculture, and diversions for water export to the City of Los Angeles. Lower Rush Creek (the lowermost 13 km downstream of Grant Lake Reservoir) was dry by 1970, but now receives flow as a result of court-ordered efforts to restore former ecological conditions. Using available historic data and recent field measurements, we constructed the water balance for Lower Rush Creek, identifying six distinct historical periods characterized by very different patterns of gain and loss. The hydrologic patterns must be understood as a basis for modeling ecosystem response to stream-flow alteration. A gradually gaining stream under natural conditions, the advent of irrigation diversions caused the middle reaches of Lower Rush Creek to be often completely dry, while irrigation-recharged springs still maintained a baseflow in the downstream “Meadows” ranch. Increased water exports from the basin subsequently reduced irrigation and dried up the springs.  相似文献   

5.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

6.
: The export of dissolved molybdate reactive phosphorus (DMRP) from 22 watersheds in the Duffin Creek drainage basin near Toronto Ontario was measured over a 25-month period. The annual average loss varied from 0.027 to 2.11 kg P/ha. Phosphorus levels in a number of watersheds were strongly influenced by effluent from a sewage treatment plant which contributed about 68 percent of the annual DMRP input to Duffin Creek. An analysis of 12 watersheds which did not contain major point pollution sources revealed that DMRP concentration and losses had a significant positive correlation with crop area and a strong negative association with forest, abandoned farm land, and area of sand + sandy loam soils. The causal relationships underlying these simple correlations are difficult to evaluate because of considerable multicollinearity between land use, soil, and topographic variables. Analysis of a mass balance for the downstream reaches of Duffin Creek indicated that there was considerable retention of phosphorus in the river channel particularly during summer low flows.  相似文献   

7.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

8.
ABSTRACT: Although the effects of vegetation management on streamflow have been studied in many locations, the effects of augmented streamflow on downstream water users have not been carefully analyzed. This study examines the routing of streamflow increases that could be produced in the Verde River Basin of Arizona. Reservoir management and water routing to users in the Salt River Valley around Phoenix were carefully modeled. Simulation of water routing with and without vegetation modification indicates that, under current institutional conditions, less than one-half of the streamflow increase would reach consumptive users as surface water. Most of the remainder would accumulate in storage until a year of unusually heavy runoff, when it would add to reservoir spills. Under alternative scenarios, from 39 to 58 percent of the streamflow increase was delivered to consumptive users.  相似文献   

9.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   

10.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

11.
A diversion system has been designed to carry the flow from East Fork of Coal Creek around the area proposed for mining at Thunder Basin Coal Company's (TBCC) Coal Creek mine in Campbell County, Wyoming. This paper describes the field and analysis procedures necessary to prepare the diversion design and impact evaluation, and the innovative concepts developed for the diversion system design to minimize impacts on downstream channel stability. Under the proposed diversion system design, water from the East Basin of Coal Creek will be diverted at two locations. At one location, flow will be impounded by a small dam and decanted by a pump through a pipeline into East Fork at the location of the second diversion. At this location, a training dike will be placed across the stream channel to divert flows into a diversion channel. Gravity flow along the diversion channel will deliver water to a playa area which will be converted into a detention basin by placing a small dam across its southern end. Flows up to the magnitude of the 24-hour 2-year peak flow will be passed directly through the detention basin into Middle Fork with negligible attenuation of flow rates. For less frequent events, water will be stored in the detention basin in order to prevent velocities in Lower Middle Fork from exceeding the maximum permissible velocity above which scouring may occur. Evaporation and seepage losses from the diversion system were estimated to be small and should be more than offset by the addition of water from the playa drainage basin into the Coal Creek drainage. Velocities predicted for the Lower Middle Fork after-the diversion is constructed are expected to be low enough that significant erosion of the channel is not expected to occur.  相似文献   

12.
A robotic water quality monitoring network is used to resolve the coupled patterns of a natural tracer, specific conductance (SC), and metrics of light scattering and turbidity for Schoharie Creek and downstream Schoharie Reservoir, with particular emphasis on the impacts of runoff events. Strong relationships between these parameters and streamflow, and the propensity for this tributary to plunge in the reservoir in summer and fall based on its lower temperature, are reported. The entry of this stream, the primary tributary, into the reservoir as a turbid density current during runoff events is depicted as distinct and vertically coincident subsurface SC minima and peaks in measures of light scattering. The magnitudes of these signatures imparted to the reservoir's water column are demonstrated to be strongly dependent on the magnitude of the runoff event. The time course of the diminishment of these signatures and longitudinal differences in turbidity within the reservoir are described. The documented patterns of SC and metrics of light scattering provided by the robotic monitoring network offer a rare opportunity to support development and testing of a turbidity model with the necessary attributes of fine temporal and spatial resolution.  相似文献   

13.
ABSTRACT: Average-annual volumes of runoff, evapotranspiration, channel loss, upland (interchannel) recharge, and total recharge were estimated for watersheds of 53 channel sites in the Amargosa River basin above Shoshone, California. Estimates were based on a water-balance approach combining field techniques for determining streamflow with distributed-parameter simulation models to calculate transmission losses of ephemeral streamflow and upland recharge resulting from high-magnitude, low-frequency precipitation events. Application of the water-balance models to the Amargosa River basin, Nevada and California, including part of the Nevada Test Site, suggests that about 20.5 million cubic meters of water recharges the ground-water reservoir above Shoshone annually. About 1.6 percent of precipitation becomes recharge basinwide. About 90 percent of the recharge is by transmission loss in channels, and the remainder occurs when infrequent storms yield sufficient precipitation that soil water percolates beyond the rooting zone and reaches the zone of saturation from interchannel areas. Highest rates of recharge are in headwaters of the Amargosa River and Fortymile Wash; the least recharge occurs in areas of relatively low precipitation in the lowermost Amargosa River watershed.  相似文献   

14.
Abstract: The authors develop a model framework that includes a set of hydrologic modules as a water resources management and planning tool for the upper Santa Cruz River near the Mexican border, Southern Arizona. The modules consist of: (1) stochastic generation of hourly precipitation scenarios that maintain the characteristics and variability of a 45‐year hourly precipitation record from a nearby rain gauge; (2) conceptual transformation of generated precipitation into daily streamflow using varied infiltration rates and estimates of the basin antecedent moisture conditions; and (3) surface‐water to ground‐water interaction for four downstream microbasins that accounts for alluvial ground‐water recharge, and ET and pumping losses. To maintain the large inter‐annual variability of streamflow as prevails in Southern Arizona, the model framework is constructed to produce three types of seasonal winter and summer categories of streamflow (i.e., wet, medium, or dry). Long‐term (i.e., 100 years) realizations (ensembles) are generated by the above described model framework that reflects two different regimes of inter annual variability. The first regime is that of the historic streamflow gauge record. The second regime is that of the tree ring reconstructed precipitation, which was derived for the study location. Generated flow ensembles for these two regimes are used to evaluate the risk that the regional four ground‐water microbasins decline below a preset storage threshold under different operational water utilization scenarios.  相似文献   

15.
ABSTRACT: A regional water conservation system for drought management involves many uncertain factors. Water received from precipitation may stay on the ground surface, evaporate back into the atmosphere, or infiltrate into the ground. Reliable estimates of the amount of evapotranspiration and infiltration are not available for a large basin, especially during periods of drought. By applying a geographic information system, this study develops procedures to investigate spatial variations of unavailable water for given levels of drought severity. Levels of drought severity are defined by truncated values of monthly precipitation and daily streamflow to reflect levels of water availability. The greater the truncation level, the lower the precipitation or streamflow. Truncation levels of monthly precipitation are recorded in depth of water while those of daily streamflow are converted into monthly equivalent water depths. Truncation levels of precipitation and streamflow treated as regionalized variables are spatially interpolated by the unbiased minimum variance estimation. The interpolated results are vector values of precipitation and streamflow at a grid of points covering the studied basin. They are then converted into raster‐based values and expressed graphically. The image subtraction operation is used to subtract the image of streamflow from that of precipitation at their corresponding level of drought severity. It is done on a cell‐by‐cell basis resulting in new attribute values to form the spatial image representing a spatial distribution of potential water loss at a given level of drought severity.  相似文献   

16.
ABSTRACT: Floodwater-retarding impoundments, controlling 68 percent of the drainage area of Tonkawa Creek, a Washita River tributary in southwestern Oklahoma, have reduced the total flow volume about 36 percent over a 5-year period. Analyses showed the reduction occurred primarily in the less-than-2.5-cfs flow range, indicating the base flow regime has been altered. However, channelizing the downstream, mild-sloped, 3.6 miles of Tonkawa Creek that flows across a Washita River terrace increased the flow volume fourfold at the outlet. A double-masscurve analysis of water yield from a 1,127-square-mile Washita basin segment versus an untreated tributary showed the yield has not changed after 25 percent of the tributary area had been treated. Therefore, the flow reduction caused by structures is being offset by increased yields from channelization.  相似文献   

17.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

18.
As early as the passage of the 1972 Federal Water Pollution Control Act the U.S. government has sought to protect the nation’s water resources through regulatory tools. While there has been a large amount of research on wetlands and wetland mitigation, very little is known about the impact of Section 404 permitting on water quantity. This research examines the impact of Section 404 permit types on peak annual streamflow in Coastal Texas from 1996 to 2003. Results of cross-sectional time-series regression analyses indicate that all four permit types have positive and significant effects on peak streamflow. These effects also vary by permit type, with Individual permits having the highest per-permit impact on peak annual flow.  相似文献   

19.
ABSTRACT: Water scarcity in the Sevier River Basin in south‐central Utah has led water managers to seek advanced techniques for identifying optimal forecasting and management measures. To more efficiently use the limited quantity of water in the basin, better methods for control and forecasting are imperative. Basin scale management requires advanced forecasts of the availability of water. Information about long term water availability is important for decision making in terms of how much land to plant and what crops to grow; advanced daily predictions of streamflows and hydraulic characteristics of irrigation canals are of importance for managing water delivery and reservoir releases; and hourly forecasts of flows in tributary streams to account for diurnal fluctuations are vital to more precisely meet the day‐to‐day expectations of downstream farmers. A priori streamflow information and exogenous climate data have been used to predict future streamflows and required reservoir releases at different timescales. Data on snow water equivalent, sea surface temperatures, temperature, total solar radiation, and precipitation are fused by applying artificial neural networks to enhance long term and real time basin scale water management information. This approach has not previously been used in water resources management at the basin‐scale and could be valuable to water users in semi‐arid areas to more efficiently utilize and manage scarce water resources.  相似文献   

20.
ABSTRACT: The problem of real-time quality control of streamflow data is addressed. Five methods are investigated via a Monte-Carlo simulation experiment based on streamflow data from Bird Creek basin in Oklahoma. The five methods include three deterministic approaches and two statistical approaches. The relative performance of the investigated methods is evaluated under hypothesized random mechanism generating isolated outliers. The deterministic method based on streamflow gradient analysis and the statistical method based on forecast residual analysis perform best in detecting such outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号