首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract:  Priority setting is an essential component of biodiversity conservation. Existing methods to identify priority areas for conservation have focused almost entirely on biological factors. We suggest a new relative ranking method for identifying priority conservation areas that integrates both biological and social aspects. It is based on the following criteria: the habitat's status, human population pressure, human efforts to protect habitat, and number of endemic plant and vertebrate species. We used this method to rank 25 hotspots, 17 megadiverse countries, and the hotspots within each megadiverse country. We used consistent, comprehensive, georeferenced, and multiband data sets and analytical remote sensing and geographic information system tools to quantify habitat status, human population pressure, and protection status. The ranking suggests that the Philippines, Atlantic Forest, Mediterranean Basin, Caribbean Islands, Caucasus, and Indo-Burma are the hottest hotspots and that China, the Philippines, and India are the hottest megadiverse countries. The great variation in terms of habitat, protected areas, and population pressure among the hotspots, the megadiverse countries, and the hotspots within the same country suggests the need for hotspot- and country-specific conservation policies.  相似文献   

2.
Abstract:  Plant-diversity hotspots on a global scale are well established, but smaller local hotspots within these must be identified for effective conservation of plants at the global and local scales. We used the distributions of endemic and endemic-threatened species of Myrtaceae to indicate areas of plant diversity and conservation importance within the Atlantic coastal forests ( Mata Atlântica ) of Brazil. We applied 3 simple, inexpensive geographic information system (GIS) techniques to a herbarium specimen database: predictive species-distribution modeling (Maxent); complementarity analysis (DIVA-GIS); and mapping of herbarium specimen collection locations. We also considered collecting intensity, which is an inherent limitation of use of natural history records for biodiversity studies. Two separate areas of endemism were evident: the Serra do Mar mountain range from Paraná to Rio de Janeiro and the coastal forests of northern Espírito Santo and southern Bahia. We identified 12 areas of approximately 35 km2 each as priority areas for conservation. These areas had the highest species richness and were highly threatened by urban and agricultural expansion. Observed species occurrences, species occurrences predicted from the model, and results of our complementarity analysis were congruent in identifying those areas with the most endemic species. These areas were then prioritized for conservation importance by comparing ecological data for each.  相似文献   

3.
China's Belt and Road Initiative (BRI) sets to create connections and build infrastructure across Eurasia, Asia, and parts of the African continent in its initial phase and is the largest infrastructure project of all time. Any infrastructure project on this scale will necessarily pass through ecofragile regions and key biodiversity areas (KBAs). This creates an imperative to identify possible areas of impact and probable effects on conservation values to facilitate adaptive planning and to mitigate, minimize, or avoid impacts. Using the highest resolution route maps of the BRI available, I overlaid the proposed road and rail routes on KBAs, protected areas, and predicted biodiversity hotspots for over 4138 animal and 7371 plant species. I also assessed the relationship between the proposed route with the distribution of mines across BRI countries and the proportion of deforestation and forest near routes. Infrastructure, especially mining, was clustered near the proposed route; thus, construction and development along the route may increase the size and number of mines. Up to 15% of KBAs were within 1 km of proposed railways. Thus, planned and probable development along the routes may pose a significant risk to biodiversity, especially because the majority of KBAs are unprotected. Many biodiversity hotspots for different taxa were near the route. These hotspots varied between taxa, making systematic management and environmental impact assessments an effective strategy for at least some taxa. A combination of planning and mitigation strategies will likely be necessary to protect the most important areas for biodiversity proximal to development, especially in currently unprotected KBAs and other regions that need protection. A fuller assessment of trade-offs between conservation and other values will be necessary to make good decisions for each project and site being developed, including potentially modifying parts of the route to minimize impacts. Modification or foregoing of infrastructure may be needed if stakeholders consider the conservation costs too high.  相似文献   

4.
Conserving freshwater habitats and their biodiversity in the Amazon Basin is a growing challenge in the face of rapid anthropogenic changes. We used the most comprehensive fish-occurrence database available (2355 valid species; 21,248 sampling points) and 3 ecological criteria (irreplaceability, representativeness, and vulnerability) to identify biodiversity hotspots based on 6 conservation templates (3 proactive, 1 reactive, 1 representative, and 1 balanced) to provide a set of alternative planning solutions for freshwater fish protection in the Amazon Basin. We identified empirically for each template the 17% of sub-basins that should be conserved and performed a prioritization analysis by identifying current and future (2050) threats (i.e., degree of deforestation and habitat fragmentation by dams). Two of our 3 proactive templates had around 65% of their surface covered by protected areas; high levels of irreplaceability (60% of endemics) and representativeness (71% of the Amazonian fish fauna); and low current and future vulnerability. These 2 templates, then, seemed more robust for conservation prioritization. The future of the selected sub-basins in these 2 proactive templates is not immediately threatened by human activities, and these sub-basins host the largest part of Amazonian biodiversity. They could easily be conserved if no additional threats occur between now and 2050.  相似文献   

5.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   

6.
Refining Biodiversity Conservation Priorities   总被引:3,自引:1,他引:3  
Abstract:  Although there is widespread agreement about conservation priorities at large scales (i.e., biodiversity hotspots), their boundaries remain too coarse for setting practical conservation goals. Refining hotspot conservation means identifying specific locations (individual habitat patches) of realistic size and scale for managers to protect and politicians to support. Because hotspots have lost most of their original habitat, species endemic to them rely on what remains. The issue now becomes identifying where this habitat is and these species are. We accomplished this by using straightforward remote sensing and GIS techniques, identifying specific locations in Brazil's Atlantic Forest hotspot important for bird conservation. Our method requires a regional map of current forest cover, so we explored six popular products for mapping and quantifying forest: MODIS continuous fields and a MODIS land cover (preclassified products), AVHRR, SPOT VGT, MODIS (satellite images), and a GeoCover Landsat thematic mapper mosaic (jpg). We compared subsets of these forest covers against a forest map based on a Landsat enhanced thematic mapper. The SPOT VGT forest cover predicted forest area and location well, so we combined it with elevation data to refine coarse distribution maps for forest endemic birds. Stacking these species distribution maps enabled identification of the subregion richest in threatened birds—the lowland forests of Rio de Janeiro State. We highlighted eight priority fragments, focusing on one with finer resolved imagery for detailed study. This method allows prioritization of areas for conservation from a region >1 million km2 to forest fragments of tens of square kilometers. To set priorities for biodiversity conservation, coarse biological information is sufficient. Hence, our method is attractive for tropical and biologically rich locations, where species location information is sparse.  相似文献   

7.
Abstract:  In the northeastern United States, pitch pine (  Pinus rigida Mill.)–scrub oak ( Quercus ilicifolia Wang.) communities are increasingly threatened by development and fire suppression, and prioritization of these habitats for conservation is of critical importance. As a basis for local conservation planning in a pitch pine–scrub oak community in southeastern Massachusetts, we developed logistic-regression models based on multiscale landscape and patch variables to predict hotspots of rare and declining bird and moth species. We compared predicted moth distributions with observed species-occurrence records to validate the models. We then quantified the amount of overlap between hotspots to assess the utility of rare birds and moths as indicator taxa. Species representation in hotspots and the current level of hotspot protection were also assessed. Predictive models included variables at all measured scales and resulted in average correct classification rates (optimal cut point) of 85.6% and 89.2% for bird and moth models, respectively. The majority of moth occurrence records were within 100 m of predicted habitat. Only 13% of all bird hotspots and 10% of all moth hotspots overlapped, and only a few small patches in and around Myles Standish State Forest were predicted to be hotspots for both taxa. There was no correlation between the bird and moth species-richness maps across all levels of richness ( r =−0.03, p = 0.62). Species representation in hotspots was high, but most hotspots had limited or no protection. Given the lack of correspondence between bird and moth hotspots, our results suggest that use of species-richness indicators for conservation planning may be ineffective at local scales. Based on these results, we suggest that local-level conservation planning in pitch pine–scrub oak communities be based on multitaxa, multiscale approaches.  相似文献   

8.
Abstract: The conflict between economic growth and biodiversity conservation is understood in portions of academia and sometimes acknowledged in political circles. Nevertheless, there is not a unified response. In political and policy circles, the environmental Kuznets curve (EKC) is posited to solve the conflict between economic growth and environmental protection. In academia, however, the EKC has been deemed fallacious in macroeconomic scenarios and largely irrelevant to biodiversity. A more compelling response to the conflict is that it may be resolved with technological progress. Herein I review the conflict between economic growth and biodiversity conservation in the absence of technological progress, explore the prospects for technological progress to reconcile that conflict, and provide linguistic suggestions for describing the relationships among economic growth, technological progress, and biodiversity conservation. The conflict between economic growth and biodiversity conservation is based on the first two laws of thermodynamics and principles of ecology such as trophic levels and competitive exclusion. In this biophysical context, the human economy grows at the competitive exclusion of nonhuman species in the aggregate. Reconciling the conflict via technological progress has not occurred and is infeasible because of the tight linkage between technological progress and economic growth at current levels of technology. Surplus production in existing economic sectors is required for conducting the research and development necessary for bringing new technologies to market. Technological regimes also reflect macroeconomic goals, and if the goal is economic growth, reconciliatory technologies are less likely to be developed. As the economy grows, the loss of biodiversity may be partly mitigated with end‐use innovation that increases technical efficiency, but this type of technological progress requires policies that are unlikely if the conflict between economic growth and biodiversity conservation (and other aspects of environmental protection) is not acknowledged.  相似文献   

9.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

10.
Global targets for the percentage area of land protected, such as 30% by 2030, have gained increasing prominence, but both their scientific basis and likely effectiveness have been questioned. As with emissions-reduction targets based on desired climate outcomes, percentage-protected targets combine values and science by estimating the area over which conservation actions are required to help achieve desired biodiversity outcomes. Protected areas are essential for achieving many biodiversity targets, in part because many species are highly sensitive to human-associated disturbance. However, because the contribution of protected areas to biodiversity outcomes is contingent on their location, management, governance, threats, and what occurs across the broader landscape matrix, global percentage-protected targets are unavoidably empirical generalizations of ecological patterns and processes across diverse geographies. Percentage-protected targets are insufficient in isolation but can complement other actions and contribute to biodiversity outcomes within a framework that balances accuracy and pragmatism in a global context characterized by imperfect biodiversity data. Ideally, percentage-protected targets serve as anchors that strengthen comprehensive national biodiversity strategies by communicating the level of ambition necessary to reverse current trends of biodiversity loss. If such targets are to fulfill this role within the complex societal process by which both values and science impel conservation actions, conservation scientists must clearly communicate the nature of the evidence base supporting percentage-protected targets and how protected areas can function within a broader landscape managed for sustainable coexistence between people and nature. A new paradigm for protected and conserved areas recognizes that national coordination, incentives, and monitoring should support rather than undermine diverse locally led conservation initiatives. However, the definition of a conserved area must retain a strong focus on biodiversity to remain consistent with the evidence base from which percentage-protected targets were originally derived.  相似文献   

11.
Species distribution data are an essential biodiversity variable requiring robust monitoring to inform wildlife conservation. Yet, such data remain inherently sparse because of the logistical challenges of monitoring biodiversity across broad geographic extents. Surveys of people knowledgeable about the occurrence of wildlife provide an opportunity to evaluate species distributions and the ecology of wildlife communities across large spatial scales. We analyzed detection histories of 30 vertebrate species across the Western Ghats biodiversity hotspot in India, obtained from a large-scale interview survey of 2318 people who live and work in the forests of this region. We developed a multispecies occupancy model that simultaneously corrected for false-negative (non-detection) and false-positive (misidentification) errors that interview surveys can be prone to. Using this model, we integrated data across species in composite analyses of the responses of functional species groups (based on disturbance tolerance, diet, and body mass traits) to spatial variation in environmental variables, protection, and anthropogenic pressures. We observed a positive association between forest cover and the occurrence of species with low tolerance of human disturbance. Protected areas were associated with higher occurrence for species across different functional groups compared with unprotected lands. We also observed the occurrence of species with low disturbance tolerance, herbivores, and large-bodied species was negatively associated with developmental pressures, such as human settlements, energy production and mining, and demographic pressures, such as biological resource extraction. For the conservation of threatened vertebrates, our work underscores the importance of maintaining forest cover and reducing deforestation within and outside protected areas, respectively. In addition, mitigating a suite of pervasive human pressures is also crucial for wildlife conservation in one of the world's most densely populated biodiversity hotspots.  相似文献   

12.
Abstract:  We argue that the millions of specimen-label records published over the past decades in thousands of taxonomic revisions are a cost-effective source of information of critical importance for incorporating invertebrates into biodiversity research and conservation decisions. More specifically, we demonstrate for a specimen database assembled during a revision of the robber-fly genus Euscelidia (Asilidae, Diptera) how nonparametric species richness estimators (Chao1, incidence-based coverage estimator, second-order jackknife) can be used to (1) estimate global species diversity, (2) direct future collecting to areas that are undersampled and/or likely to be rich in new species, and (3) assess whether the plant-based global biodiversity hotspots of Myers et al. (2000) contain a significant proportion of invertebrates. During the revision of Euscelidia , the number of known species more than doubled, but estimation of species richness revealed that the true diversity of the genus was likely twice as high. The same techniques applied to subsamples of the data indicated that much of the unknown diversity will be found in the Oriental region. Assessing the validity of biodiversity hotspots for invertebrates is a formidable challenge because it is difficult to decide whether species are hotspot endemics, and lists of observed species dramatically underestimate true diversity. Lastly, conservation biologists need a specimen database analogous to GenBank for collecting specimen records. Such a database has a three-fold advantage over information obtained from digitized museum collections: (1) it is shown for Euscelidia that a large proportion of unrevised museum specimens are misidentified; (2) only the specimen lists in revisionary studies cover a wide variety of private and public collections; and (3) obtaining specimen records from revisions is cost-effective.  相似文献   

13.
SUMMARY

The contention is examined that forests can contribute to biodiversity conservation either as protected areas or as production forests, especially where the latter are managed for timber extraction. This notion is explored for the Peninsular Malaysian forests, and it is shown that biodiversity conservation would be optimized if the system of protected areas is located within a broader matrix of carefully managed production forests. A model is developed to illustrate how the biodiversity value of protected areas would be enhanced through interaction with production forests. In no way is the suggestion being made here that production forests could serve as critical centres for the conservation of biotic diversity, but then neither should they be dismissed as areas completely devoid of any contribution to the biodiversity cause. These findings are especially significant in Peninsular Malaysia where two-thirds of the forests legally set aside as Permanent Forest Estate is to be managed as production forests. If the incremental biodiversity value of these forests can be captured through improved management practices, then the overall biodiversity status of the country, and the globe, could be greatly increased. The extent to which any country is willing to set aside forests as protected areas, strictly for biodiversity conservation, is limited, hence the integrated approach to the management of protected and production forests advocated here could prove an attractive and feasible strategy. Where funding is limited, as in the case of the Global Environment Facility, it may be worthwhile to provide incentives for improved management of production forests as a means of conserving biodiversity.  相似文献   

14.
Abstract:  Rapid biodiversity assessment and conservation planning require the use of easily quantified and estimated surrogates for biodiversity. Using data sets from Québec and Queensland, we applied four methods to assess the extent to which environmental surrogates can represent biodiversity components: (1) surrogacy graphs; (2) marginal representation plots; (3) Hamming distance function; and (4) Syrjala statistical test for spatial congruence. For Québec we used 719 faunal and floral species as biodiversity components, and for Queensland we used 2348 plant species. We used four climatic parameter types (annual mean temperature, minimum temperature during the coldest quarter, maximum temperature during the hottest quarter, and annual precipitation), along with slope, elevation, aspect, and soil types, as environmental surrogates. To study the effect of scale, we analyzed the data at seven spatial scales ranging from 0.01° to 0.10° longitude and latitude. At targeted representations of 10% for environmental surrogates and biodiversity components, all four methods indicated that using a full set of environmental surrogates systematically provided better results than selecting areas at random, usually ensuring that ≥90% of the biodiversity components achieved the 10% targets at scales coarser than 0.02°. The performance of surrogates improved with coarser spatial resolutions. Thus, environmental surrogate sets are useful tools for biodiversity conservation planning. A recommended protocol for the use of such surrogates consists of randomly selecting a set of areas for which distributional data are available, identifying an optimal surrogate set based on these areas, and subsequently prioritizing places for conservation based on the optimal surrogate set.  相似文献   

15.
Abstract:  The identification of conservation areas based on systematic reserve-selection algorithms requires decisions related to both spatial and ecological scale. These decisions may affect the distribution and number of sites considered priorities for conservation within a region. We explored the sensitivity of systematic reserve selection by altering values of three essential variables. We used a 1:20,000–scale terrestrial ecosystem map and habitat suitability data for 29 threatened vertebrate species in the Okanagan region of British Columbia, Canada. To these data we applied a reserve-selection algorithm to select conservation sites while altering selection unit size and shape, features of biodiversity (i.e., vertebrate species), and area conservation targets for each biodiversity feature. The spatial similarity, or percentage overlap, of selected sets of conservation sites identified (1) with different selection units was ≤40%, (2) with different biodiversity features was 59%, and (3) with different conservation targets was ≥94%. Because any selected set of sites is only one of many possible sets, we also compared the conservation value (irreplaceability) of all sites in the region for each variation of the data. The correlations of irreplaceability were weak for different selection units (0.23 ≤ r ≤ 0.67), strong for different biodiversity features ( r = 0.84), and mixed for different conservation targets ( r = 0.16; 0.16; 1.00). Because of the low congruence of selected sites and weak correlations of irreplaceability for different selection units, recommendations from studies that have been applied at only one spatial scale must be considered cautiously.  相似文献   

16.
Abstract: Identification of priority areas is a fundamental goal in conservation biology. Because of a lack of detailed information about species distributions, conservation targets in the Zhoushan Archipelago (China) were established on the basis of a species–area–habitat relationship (choros model) combined with an environmental cluster analysis (ECA). An environmental‐distinctness index was introduced to rank areas in the dendrogram obtained with the ECA. To reduce the effects of spatial autocorrelation, the ECA was performed considering spatial constraints. To test the validity of the proposed index, a principal component analysis–based environmental diversity approach was also performed. The priority set of islands obtained from the spatially constrained cluster analysis coupled with the environmental‐distinctness index had high congruence with that from the traditional environmental‐diversity approach. Nevertheless, the environmental‐distinctness index offered the advantage of giving hotspot rankings that could be readily integrated with those obtained from the choros model. Although the Wilcoxon matched‐pairs test showed no significant difference among the rankings from constrained and unconstrained clustering process, as indicated by cophenetic correlation, spatially constrained cluster analysis performed better than the unconstrained cluster analysis, which suggests the importance of incorporating spatial autocorrelation into ECA. Overall, the integration of the choros model and the ECA showed that the islands Liuheng, Mayi, Zhoushan, Fodu, and Huaniao may be good candidates on which to focus future efforts to conserve regional biodiversity. The 4 types of priority areas, generated from the combination of the 2 approaches, were explained in descending order on the basis of their conservation importance: hotspots with distinct environmental conditions, hotspots with general environmental conditions, areas that are not hotspots with distinct environmental conditions, and areas that are not hotspots with general environmental conditions.  相似文献   

17.
Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.  相似文献   

18.
Abstract: The establishment of marine protected areas is often viewed as a conflict between conservation and fishing. We considered consumptive and nonconsumptive interests of multiple stakeholders (i.e., fishers, scuba divers, conservationists, managers, scientists) in the systematic design of a network of marine protected areas along California's central coast in the context of the Marine Life Protection Act Initiative. With advice from managers, administrators, and scientists, a representative group of stakeholders defined biodiversity conservation and socioeconomic goals that accommodated social needs and conserved marine ecosystems, consistent with legal requirements. To satisfy biodiversity goals, we targeted 11 marine habitats across 5 depth zones, areas of high species diversity, and areas containing species of special status. We minimized adverse socioeconomic impacts by minimizing negative effects on fishers. We included fine‐scale fishing data from the recreational and commercial fishing sectors across 24 fisheries. Protected areas designed with consideration of commercial and recreational fisheries reduced potential impact to the fisheries approximately 21% more than protected areas designed without consideration of fishing effort and resulted in a small increase in the total area protected (approximately 3.4%). We incorporated confidential fishing data without revealing the identity of specific fisheries or individual fishing grounds. We sited a portion of the protected areas near land parks, marine laboratories, and scientific monitoring sites to address nonconsumptive socioeconomic goals. Our results show that a stakeholder‐driven design process can use systematic conservation‐planning methods to successfully produce options for network design that satisfy multiple conservation and socioeconomic objectives. Marine protected areas that incorporate multiple stakeholder interests without compromising biodiversity conservation goals are more likely to protect marine ecosystems.  相似文献   

19.
本文针对目前环境保护的热点之一——全球和地区性生物多样性保护,对其中的一个基础理论问题,即区域生物多样性评价标准进行了探索;从理论上对制定这一标准的必要性、可行性、生物多样性的基本内涵、区域生物多样性中心标准的意义及标准制定的原则和依据进行了阐述,并在此基础上提出了我国区域生物多样性中心标准的基本框架。  相似文献   

20.
A Freshwater Classification Approach for Biodiversity Conservation Planning   总被引:8,自引:0,他引:8  
Abstract:  Freshwater biodiversity is highly endangered and faces increasing threats worldwide. To be complete, regional plans that identify critical areas for conservation must capture representative components of freshwater biodiversity as well as rare and endangered species. We present a spatially hierarchical approach to classify freshwater systems to create a coarse filter to capture representative freshwater biodiversity in regional conservation plans. The classification framework has four levels that we described using abiotic factors within a zoogeographic context and mapped in a geographic information system. Methods to classify and map units are flexible and can be automated where high-quality spatial data exist, or can be manually developed where such data are not available. Products include a spatially comprehensive inventory of mapped and classified units that can be used remotely to characterize regional patterns of aquatic ecosystems. We provide examples of classification procedures in data-rich and data-poor regions from the Columbia River Basin in the Pacific Northwest of North America and the upper Paraguay River in central South America. The approach, which has been applied in North, Central, and South America, provides a relatively rapid and pragmatic way to account for representative freshwater biodiversity at scales appropriate to regional assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号