首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To investigate the influence of illumination on the fermentative hydrogen production system, the hydrogen production efficiencies of two kinds of anaerobic activated sludge (floc and granule) from an anaerobic baffled reactor were detected under visible light, dark and light-dark, respectively. The 10 mL floc sludge or granular sludge was respectively inoculated to 100 mL diluted molasses (chemical oxygen demand of 8000 mg·L-1) in a 250 mL serum bottle, and cultured for 24 h at 37°C under different illumination conditions. The results showed that the floc was more sensitive to illumination than the granule. A hydrogen yield of 19.8 mL was obtained in the dark with a specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1 (floc), which was the highest among the three illumination conditions. Under dark condition, the hydrogen yield of floc sludge reached the highest with the specific hydrogen production rate of 3.52 mol·kg-1MLVSS·d-1, and under light-dark, light, the specific hydrogen production rate was 3.11 and 2.21 mol·kg-1MLVSS·d-1, respectively. The results demonstrated that the illumination may affect the dehydrogenase activity of sludge as well as the activity of hydrogen-producing acetogens and then impact hydrogen production capacity.  相似文献   

2.
An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m-3·d-1 with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m-3·d-1, the hydrogen production rate dropped from 22.6 to 1.58 L·d-1 as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m-3·d-1 and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m-3·d-1, the hydrogen production rate and hydrogen yield increased to 42.1 L·d-1 and 1.40 mol H2·molglucose-consumed-1, respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS-1·d-1. It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m-3·d-1, whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.  相似文献   

3.
In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H202 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H202, Fe2, and initial pH were found to be 178 mg-g-1 VSS (volatile suspended solids), 211mg.gI VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton's reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.  相似文献   

4.
A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD?m-3·d-1, HRT of 8h, and temperature of 35°C for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD?m-3·d-1 on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493 mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1–4.5, -250–(-290) mV, and 230–260 mgCaCO3?L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L?gMLVSS-1·d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.  相似文献   

5.
Gravitational thickening is the prevailing method to reduce sludge volume but the process is slow and usually requires addition of polyelectrolyte(s). This paper investigated the potential benefits of sonication on enhancing the sludge gravitational thickening with very low energy dose, so called “weak ultrasound”. Results showed that weak sonication significantly changed the sludge settlability and the main mechanism was release of the loosely bounded extracellular polymeric substances. The changes in sludge behaviors by sonication were strongly influenced by power density and sonication duration. Lower sound frequency was slightly better than higher frequency. Weak sonication (<680 kJ·kg-1 DS) improved the sludge gravitational thickening while high ultrasonic energy deteriorated the process. Considering both the sludge thickening efficiency and energy consumption, the optimum conditions were 0.15 W·mL-1, 7 s, and 25 kHz. Under such conditions, the energy dose was only 155 kJ·kg-1 DS, much lower than literature reports, and the sludge settling time was shortened from 24 h to 12?h. Weak sonication could substitute expensive polyelectrolyte coagulant for sludge thickening. Combination of weak sonication and polyelectrolyte could further reduce the settling time to 6 h. The final water content of the thickened sludge was not changed after sonication or polyelectrolyte addition.  相似文献   

6.
Among the numerous parameters affecting the membrane bioreactor (MBR) performance, the aeration intensity is one of the most important factors. In the present investigation, an anoxic/aerobic-type (A/O-type) sequencing batch MBR system, added anoxic process as a pretreatment to improve the biodegradability of azo dye wastewater, was investigated under different aeration intensities and the impact of the aeration intensity on effluent quantity, sludge properties, extracellular polymeric substances (EPS) amount generated as well as the change of permeation flux were examined. Neither lower nor higher aeration intensities could improve A/O-type sequencing batch MBR performances. The results showed 0.15 m3·h-1 aeration intensity was promising for treatment of azo dye wastewater under the conditions examined. Under this aeration intensity, chemical oxygen demand (COD), ammonium nitrogen and color removal as well as membrane flux amounted to 97.8%, 96.5%, 98.7% and 6.21 L·m-2·h-1, respectively. The effluent quality, with 25.0 mg·L-1COD, 0.84 mg·L-1 ammonium nitrogen and 8 chroma, could directly meet the reuse standard in China. In the meantime, the sludge relative hydrophobicity, the bound EPS, soluble EPS and EPS amounts contained in the membrane fouling layer were 70.3%, 52.0 mg·g-1VSS, 38.8 mg·g-1VSS and 90.8 mg·g-1VSS, respectively, which showed close relationships to both pollutant removals and membrane flux.  相似文献   

7.
新型溴系阻燃剂(NBFRs,novel brominated flame retardants)作为传统溴系阻燃剂的替代品已广泛应用于电子产品、纺织品、家具等商品中,随着这些商品的生产、使用和处置,NBFRs不可避免地释放到环境中,给环境和人体带来潜在的危害.部分NBFRs可通过摄食和呼吸作用进入人体对人体产生一定危害...  相似文献   

8.
Hydrogen sulfide emission in sewer systems is associated with toxicity, corrosion, odour nuisance and high costs treatment. In this study, a novel method to inhibit sulfide generation from sewage by means of glutaraldehyde supplementation has been suggested and evaluated under anaerobic conditions. Different concentrations of glutaraldehyde at 10, 15, 20, 30 and 40 mg·L-1 have been investigated. Besides, the possible impacts of glutaraldehyde supplementation on an activated sludge system and an appraisal of the economic aspects are presented as well. As observed from the experimental results, a dosage of 20 mg·L-1 glutaraldehyde resulted in a significant decrease of the sulfide production by 70%–80% in the simulated sewage. Moreover, the impacts of additional glutaraldehyde at 20 mg·L-1 on activated sludge, in terms of chemical oxygen demand removal and oxygen uptake rates, were negligible. From an economical point of view, the cost of the commercial glutaraldehyde products required in the operation, which was calculated on the basis of activated sulfide removal avoidance, was around €3.7–4.6 S·kg-1. Therefore it is suggested that glutaraldehyde supplementation is a feasible technique to abate the sulfide problems in sewer systems. Yet further research is required to elucidate the optimum “booster” dosage and the dosing frequency in situ accordingly.  相似文献   

9.
在接种了反硝化菌的剩余污泥中投加硝酸钙药剂,利用反硝化菌消耗NO3-进行反硝化作用去除污泥中易生物降解的有机物,利用Ca2+的中和、架桥作用,改善污泥的脱水性能.固定NO3-总投加浓度为100 mg·g-1 TS,在6 d的时间内,按1次、2次、3次、6次的投加频次向污泥中投加硝酸钙.结果表明,1次投加对污泥脱水性能的提升最显著,较对照组而言,污泥CST降低了65.0%,SRF降低了73.2%,污泥脱水性能明显改善;投加硝酸钙后,污泥胞外聚合物中蛋白质含量大幅降低,S层、L层蛋白质分别从13.47 mg·L-1、11.66 mg·L-1降低至0.52 mg·L-1、1.43 mg·L-1;投加硝酸钙的污泥Zeta电位更趋于电中性.研究还发现,一次性投加硝酸钙产生了更多NO2-,有利于污泥结合水,即微生物细胞质的释放.释放出的有机碳被反硝化菌用作碳源,又增强了反硝化效果,从而促进了污泥EPS的破坏与降解,从而改善了污泥的脱水性能.  相似文献   

10.
In this paper, a study was conducted on the effect of polyhydroxyalkanoates (PHA) and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen (DO) systems. Two laboratory-scale sequencing batch reactors (SBR1 and SBR2) were operating with anaerobic/aerobic (low DO, 0.15–0.45 mg·L-1) configurations, which cultured a propionic to acetic acid ratio (molar carbon ratio) of 1.0 and 2.0, respectively. Fewer poly-3-hydroxybutyrate (PHB), total PHA, and glycogen transformations were observed with the increase of propionic/acetic acid, along with more poly-3-hydroxyvalerate (PHV) and poly-3-hydroxy-2-methyvalerate (PH2MV) shifts. The total nitrogen (TN) removal efficiency was 68% and 82% in SBR1 and SBR2, respectively. In the two SBRs, the soluble ortho-phosphate (SOP) removal efficiency was 94% and 99%, and the average sludge polyphosphate (poly-P) content (g·g-MLVSS-1) was 8.3% and 10.2%, respectively. Thus, the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity, glycogen transformation, and poly-P contained in activated sludge and further determined TN and SOP removal efficiency. Moreover, significant correlations between the SOP removal rate and the (PHV+ PH2MV)/PHA ratio were observed (R2>0.99). Accordingly, PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic (low DO) biologic nitrogen and phosphorus removal systems.  相似文献   

11.
Sodium-jarosite is a type of industrial waste that results from hydrometallurgy and inorganic chemical production. The iron content of jarosite residue may be utilized to produce theoretically the ferrous materials. The difficulty in production of high quality poly-ferric sulfate (PFS) is how to remove impurities contained in jarosite residue. This paper proposes a novel method for disposing sodium-jarosite which can be used to synthesize PFS, a very important reagent for treating waste water. The method consists of a two-step leaching experimental procedures. The first step, pre-leaching process, is to remove impurity metals by strictly controlling the leaching conditions. The acid concentration of acidic water was adjusted according to the content of impurity metals in sodium-jarosite and the leaching temperature was controlled at 25°C. The second step is to decompose sodium-jarosite to provide enough ferric ions for synthesizing PFS, the concentrated sulfuric acid consumption was 0.8 mL·g-1 sodium-jarosite and the leaching temperature was above 60°C. In the experiment, decomposing iron from sulfate sodium-jarosite can take the place of ferric martials for synthesizing PFS. Results show that the PFS synthesized from sodium-jarosite had a high poly-iron complex Fe4.67(SO4)6(OH)2·20H2O. Further, the PFS product’s specifications satisfied the national standard of China.  相似文献   

12.
Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production from anaerobic mixed culture. The effect of biogas release method on anaerobic fermentative hydrogen production in batch culture system was compared, i.e., Owen method with intermediately release, continuous releasing method, and continuous releasing+ CO2 absorbing. The experimental results showed that, at 35°C, initial pH 7.0 and glucose concentration of 10 g·L-1, the hydrogen production was only 28 mL when releasing gas by Owen method, while it increased two times when releasing the biogas continuously. The cumulative hydrogen production could reach 155 mL when carbon dioxide in the gas stream was continuously absorbed by 1 mol·L-1 NaOH. The results showed that acetate was dominated, accounting for 43% in the dissolved fermentation products in Owen method, whereas the butyrate predominated and reached 47%–53% of the total liquid end products when releasing gas continuously. It is concluded that the homoacetogenesis could be suppressed when absorbing CO2 in the gas phase in fermentative hydrogen production system.  相似文献   

13.
The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioeffluent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Laboratory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg·L-1 to<0.5 mg·L-1 (or even<0.1 mg·L-1 as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500–4000 BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15°C–40°C. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH+ 5% NaCl binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L-1, it could be reduced to<0.5 mg·L-1, with a working capacity of 4.4–4.8 g·L-1 HFO-201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.  相似文献   

14.
Effect of pH ranging from 4.0 to 11.0 on co-fermentation of waste activated sludge (WAS) with food waste for short-chain fatty acids (SCFAs) production at ambient temperature was investigated in this study. Experimental results showed that the addition of food waste significantly improved the performance of WAS fermentation system, which resulted in the increases of SCFAs production and substrate reduction. The SCFAs production at pH 6.0, 7.0, 8.0, and 9.0 and fermentation time of 4 d was respectively 5022.7, 6540.5, 8236.6, and 7911.7 mg COD·L-1, whereas in the blank tests (no pH adjustment, pH 8.0 (blank test 1), no food waste addition, pH 8.0 (blank test 2), and no WAS addition (blank test 3)) it was only 1006.9, 971.1, and 1468.5 mg COD·L-1, respectively. The composition of SCFAs at pH from 6.0 to 9.0 was also different from other conditions and propionic acid was the most prevalent SCFA, which was followed by acetic and n-butyric acids, while acetic acid was the top product under other conditions. At pH 8.0 a higher volatile suspended solids (VSS) reduction of 16.6% for the mixture of WAS and food waste than the sole WAS indicated a synergistic effect existing in fermentation system with WAS and food waste. The influence of pH on the variations of nutrient content was also studied during anaerobic fermentation of the mixture of WAS and food waste at different pH conditions. The release of NH4+-N increased with fermentation time at all pH values investigated except 4.0, 5.0 and in blank test one. The concentrations of soluble phosphorus at acidic pHs and in the blank test one were higher than those obtained at alkaline pHs. Ammonia and phosphorus need to be removed before the SCFAs-enriched fermentation liquid from WAS and food waste was used as the carbon source.  相似文献   

15.
• The sustainable approaches related to Fenton sludge reuse systems are summarized. • Degradation mechanism of Fenton sludge heterogeneous catalyst is deeply discussed. • The efficient utilization directions of Fenton sludge are proposed. The classical Fenton oxidation process (CFOP) is a versatile and effective application that is generally applied for recalcitrant pollutant removal. However, excess iron sludge production largely restricts its widespread application. Fenton sludge is a hazardous solid waste, which is a complex heterogeneous mixture with Fe(OH)3, organic matter, heavy metals, microorganisms, sediment impurities, and moisture. Although studies have aimed to utilize specific Fenton sludge resources based on their iron-rich characteristics, few reports have fully reviewed the utilization of Fenton sludge. As such, this review details current sustainable Fenton sludge reuse systems that are applied during wastewater treatment. Specifically, coagulant preparation, the reuse of Fenton sludge as an iron source in the Fenton process and as a synthetic heterogeneous catalyst/adsorbent, as well as the application of the Fenton sludge reuse system as a heterogeneous catalyst for resource utilization. This is the first review article to comprehensively summarize the utilization of Fenton sludge. In addition, this review suggests future research ideas to enhance the cost-effectiveness, environmental sustainability, and large-scale feasibility of Fenton sludge applications.  相似文献   

16.
A pilot-scale anaerobic ammonia oxidation (ANAMMOX) reactor was used to treat mixed wastewater resulting from a chlortetracycline and starch production process. The results, collected over the course of 272 days, show that the ratio of influent ammonium to nitrite, pH, and temperature can all affect the efficiency of nitrogen removal. The ratio of influent ammonium to nitrite was maintained at about 1:1 at a concentration below 200 mg·L-1 for both influent ammonium and nitrite. The total nitrogen (TN) loading rate was 0.15–0.30 kgN·m-3·d-1, pH remained at 7.8–8.5, and temperature was recorded at 33±1°C. The rate of removal of ammonia, nitrite, and TN were over 90%, 90%, and 80%, and the effluent ammonium, nitrite and TN concentrations were below 50, 30, and 100 mg·L-1.  相似文献   

17.
• The feasibility of facile fabrication of capacitor from floc sludge is discussed. • The porous carbon composites are obtained by acidification and KOH activation. • The as-prepared 3D structure has large surface area and optimal pore size. • Admirable specific capacitance and outstanding cycling stability are obtained. In this paper, floc sludge was transformed into porous carbon matrix composites by acidification and KOH activation at high temperature and used as an electrode material for application in capacitors. The effects of different treatment processes on the electrochemical properties of sludge materials were compared. The results of electrochemical tests showed that the sludge electrode exhibited excellent energy storage performance after HNO3 acidification and KOH activation with a mass ratio of 3:1 (KOH/C). The specific capacitance of the sludge electrode reached 287 F/g at a current density of 1 A/g. In addition, the sludge electrode material showed excellent cycle stability (specific capacity retained at 93.4% after 5000 cycles at 5 A/g). Based on XRD, FTIR, SEM, TEM, and BET surface analysis, the morphology of sludge electrode materials can be effectively regulated by chemical pretreatment. The best-performing material showed a 3D porous morphology with a large specific surface area (2588 m2/g) and optimal pore size distribution, improving ion channels and charge conductivity. According to the life cycle assessment of floc sludge utilization, it reduced the resource consumption and toxicity risk by more than 90% compared with ordinary sludge disposal processes. This work provided a cost-effective and eco-friendly sludge reuse method and demonstrated the application potential of sludge-based materials in high-performance supercapacitors.  相似文献   

18.
Optimization of an integrated anaerobic-aerobic bioreactor (IAAB) treatment system for the reduction of organic matter (Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) concentrations) in Palm Oil Mill Effluent (POME) to legal standards with high methane yield was performed for the first time under thermophilic condition (50°C–55°C) by using response surface methodology (RSM). The experiments were conducted based on a central composite rotatable design (CCRD) with three independent operating variables, organic loading rates in anaerobic compartment (OLRan) and mixed liquor volatile suspended solids (MLVSS) concentration in anaerobic (MLVSSan) and aerobic compartments (MLVSSa). The optimum conditions for the POME treatment were determined as OLRan of 15.6 g COD·L-1·d-1, MLVSSan of 43100 mg·L-1, and MLVSSa of 18600 mg·L-1, where high aerobic COD, BOD and TSS removal efficiencies of 96.3%, 97.9%, and 98.5% were achieved with treated BOD of 56 mg·L-1 and TSS of 28 mg·L-1 meeting the discharge standard. This optimization study successfully achieved a reduction of 42% in the BOD concentrations of the final treated effluent at a 48% higher OLRan as compared to the previous works. Besides, thermophilic IAAB system scores better feasibility and higher effectiveness as compared to the optimized mesophilic system. This is due to its higher ability to handle high OLR with higher overall treatment efficiencies (more than 99.6%), methane yield (0.31 L CH4·g-1 CODremoved) and purity of methane (67.5%). Hence, these advantages ascertain the applicability of thermophilic IAAB in the POME treatment or even in other high-strength wastewaters treatment.  相似文献   

19.
During brewery wastewater treatment by a hydrolyzation-food chain reactor (FCR) system, sludge was recycled to the anaerobic segment. With the function of hydrolyzation acidification in the anaerobic segment and the processes of aerobic oxidation and antagonism, predation, interaction and symbiosis among microbes in multilevel oxidation segment, residual sludge could be reduced effectively. The 6-month dynamic experiments show that the average chemical oxygen demand (COD) removal ratio was 92.6% and average sludge production of the aerobic segment was 8.14%, with the COD of the influent at 960–1720 mg/L and hydraulic retention time (HRT) of 12 h. Since the produced sludge could be recycled and hydrolyzed in the anaerobic segment, no excess sludge was produced during the steady running for this system.  相似文献   

20.
The highest removal efficiencies of COD and TN were achieved under 10 mg/L of Al3+. The highest TP removal efficiency occurred under 30 mg/L of Al3+. EPS, PS and PN concentrations increased with the addition of Al3+. Sludge properties significantly changed with the addition of Al3+. Aluminum ions produced by aluminum mining, electrolytic industry and aluminum-based coagulants can enter wastewater treatment plants and interact with activated sludge. They can subsequently contribute to the removal of suspended solids and affect activated sludge flocculation, as well as nitrogen and phosphorus removal. In this study, the effects of Al3+ on pollutant removal, sludge flocculation and the composition and structure of extracellular polymeric substances (EPS) were investigated under anaerobic, anoxic and oxic conditions. Results demonstrated that the highest chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies were detected for an Al3+ concentration of 10 mg/L. In addition, the maximal dehydrogenase activity and sludge flocculation were also observed at this level of Al3+. The highest removal efficiency of total phosphorus (TP) was achieved at an Al3+ concentration of 30 mg/L. The flocculability of sludge in the anoxic zone was consistently higher than that in the anaerobic and oxic zones. The addition of Al3+ promoted the secretion of EPS. Tryptophan-like fluorescence peaks were detected in each EPS layer in the absence of Al3+. At the Al3+ concentration of 10 mg/L, fulvic acid and tryptophan fluorescence peaks began to appear, while the majority of protein species and the highest microbial activity were also detected. Low Al3+ concentrations (<10 mg/L) could promote the removal efficiencies of COD and TN, yet excessive Al3+ levels (>10 mg/L) weakened microbial activity. Higher Al3+ concentrations (>30 mg/L) also inhibited the release of phosphorus in the anaerobic zone by reacting with PO43-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号