首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The adsorption of toxic chemicals on solid substates is a potential means to clean polluted waters. Here, the adsorption of two pesticides, isoproturon and dimetomorph, on lignocellulose extracted from wheat straw is investigated at 20 °C using batch adsorption experiments. Here, we show that the sorption of both pesticides is independent of pH. The sorption capacity of lignocellulose is evaluated. We show that the presence of metallic cations has no influence on the retention capacity of lignocellulose towards pesticides.  相似文献   

2.
Naturally occurring diatomaceous earth was modified by alkaline pretreatment, and its effectiveness for Cd2+ removal from contaminated water was investigated. Batch experiments were carried out to determine Cd2+ adsorption capacity and the efficiency of the sorption process under different experimental conditions. Experimental data showed good fitting to Langmuir and Freundlich isotherms models. The Cd2+ maximum adsorption capacity was 0.058 mmol g−1 for raw diatomite and increased to 0.195 mmol g−1 for alkaline-pretreated diatomite with efficiency higher than 96% (diatomite dose 2.5 g L−1, pH 6). Adsorption of Cd2+ to alkaline-pretreated diatomite increased as the temperature increased. Thermodynamic parameters were calculated to evaluate the feasibility of the adsorption process at different temperatures. The adsorption process was spontaneous and endothermic. The interaction between Cd2+ ions and diatomite surface was weak enough to be considered as physical sorption, confirmed by the low value of activation energy.  相似文献   

3.
Manganese oxide coatings on sand particles within filtration beds from a water treatment plant in Grampian, Scotland were examined to determine their control on metal mobility. This study first sought to characterise the oxides, notably their mineralogy and metal content, to provide a foundation for studies on the adsorption of dissolved metals from the treated water by the oxides. The oxides were examined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and analysed by flame atomic absorption spectrophotometry (AAS). These techniques showed the oxide coatings were amorphous but uniformly distributed over each sand grain. The oxides were selectively removed from the sand grains prior to analysis by AAS using a hydroxylamine hydrochloride selective leaching method. The compositional range of the extracts was 100–150 mg L−1 Mn; 30–55 mg L−1 Fe; 17–56 mg L−1 Ca; 4.6–7.0 mg L−1 Ni; 4.6–6.8 mg L−1 Zn and 1.3–5.7 mg L−1 Mg. When these results are expressed as mg of metal per mg of Mn, the metal content of the oxides is remarkably uniform: 0.25–0.37 mg Fe; 0.14–0.35 mg Ca; 0.035–0.042 mg Ni; 0.035–0.040 mg Zn; 0.01–0.04 mg Mg. The greatest metal concentrations were consistently found in the upper 3 cm of the filtration bed, and these decrease with increasing depth. After the beds are cleaned a more uniform distribution of metals occurs throughout the bed. The metals taken up by the manganese coating are retained over a wide pH range with the exception of Ca and Mg which desorb to a significant extent. The percentage of calcium and magnesium lost from the coating ranges from 30–94%, the amount being dependent on the final pH of the solution. The presence of manganese oxide in the filtration beds appears to be advantageous in terms of removal of transition metals from the treated water.  相似文献   

4.
Surface waters in Scotland, notably from upland catchment areas, are commonly enriched in iron and organic acids. This study investigated the impact of these species on the direct potentiometric determination of fluoride using a fluoride-selective electrode. As the electrode technique is commonly used to monitor the fluoride content of potable waters, it is important that these effects are evaluated if such waters are to be fluoridated. The determination method used was that defined by Nicholson (1983) and Nicholson and Duff (1981) to minimise errors. This employs the TISAB III-TAC buffer system with the following composition (in 1L): 58.0 g sodium chloride, 57.0 mL glacial acetic acid, 4.0 g CDTA, 243.0 g tri-ammonium citrate adjusted to pH 5.4 with 10 M sodium hydroxide. Experimental solutions of fluoride with organic acid or iron were prepared, and the effect on fluoride concentration determined for each combination. Concentrations used: fluoride: 0.1, 1.0 mg L−1; humic acid: 5, 10, 100, 1000, 10,000 mg L−1; oxalic acid: 5, 10, 100, 1000, 10,000 mg L−1; iron(III): 1, 10, 100, 500 mg L−1; Humic acid (HA) concentrations had no impact on the determination of fluoride at the 1.0 mg L−1 level. However, with 0.1 mg L−1; F, an increase in the apparent fluoride concentration was observed when HA > 1,000 mg L−1; this increased with increasing HA content to a maximum of ∼600%. Oxalic acid (OA) generally had no impact on the fluoride determinations at the 1.0 mg L−1; level, but at an OA concentration of 10,000 mg L−1; fluoride concentrations were reduced by ∼50%. At 0.1 mg L−1 F, increasing OA concentrations produce a steady increase in the fluoride concentration of up to 200% with 1,000 mg L−1; OA, greater OA contents produce a fall in the fluoride content. Iron had no effect on the fluoride determinations at both the 0.1 and 1.0 mg L−1 levels. The causes of the apparent increases in fluoride concentration have not been determined, although fluoride contamination by the reagents has been ruled-out. However, the results demonstrate that the defined method and buffer system is suitable for the determination of fluoride in the presence of iron and organic acids at naturally occurring levels, and that fluoride will not be masked from detection.  相似文献   

5.
The effect of four low molecular weight organic acids on F adsorption by two variable charge soils was investigated using a batch method. The organic acids reduced F adsorption through competition by the acids with F for sorption sites. Oxalic and malonic acids, both of which have simpler chemical structures, were more effective than citric or malic acid. The effect of organic acids on F adsorption was more prominent at higher pH values and with larger amounts of the organic acids. The desorption study showed that the organic acids enhanced the desorption of F adsorbed by the soils. In the control and malic acid systems, desorption increased sharply with decreasing pH, while in the oxalic acid system, desorption rose slightly with decreasing pH. Desorption also increased with increasing amount of organic acid added. There are two possible mechanisms for the effect of the organic acids on F adsorption and desorption: (1)␣competition of the organic acids with F for adsorption sites and (2) dissolution of the adsorbents, especially dissolution of soil Al.  相似文献   

6.
Abstract

Total organic carbon, humic substances, and the species of trace metals (including Cu, Zn, Pb, Cd, Cr, Mn and Fe) in six and seven phases, such as bioexchangeable (P1), skeletal (carbonates, P2), easily reducible (Fe and Mn oxides, P3), moderately reducible (crystalline Mn oxides, P4), organic matters with sulphides (P5), and detritus with minerals (P6) as well as organic with humic substances (PB4) and organic residues (PB6), were analyzed in sediments from the Taiwan Erhjin coastal (including river and estuarine) area, where places we found the copper pollution. Results indicate that higher percentages of P1 and P2 for copper, zinc, lead, cadmium and manganese in samples collected in March and September of 1990 were much higher than those in P3-P6. High percentages of chromium and iron in samples respectively collected in March and September of 1990 were found in P6. for the seven phase analysis, higher percentages of copper species in PB4 and PB6 as well as iron species in PB7 were observed. On the other hand, purified humic acid with the high contents of manganese and iron in humic acid as well as purified fulvic acids were generally found at the upstream stations; and low values at coastal stations. However, extremely high copper (as high as 1750μg g?1, dry weight in fulvic acid and 820μg g?1 in humic acid) and lead (821μg g?1 in humic acid) concentrations with relatively high manganese and iron concentrations were observed in humic substances from the station near the copper recycling area. Comparing the results obtained from the Antarctic Ocean sediments with those from the Taiwan Erhjin Chi coastal sediments, the human impacts on the latter are evaluated.  相似文献   

7.
Adsorption of vanadate(V) from aqueous solution onto industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide was investigated. HCl treated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of vanadate(V) compared to untreated adsorbent. The adsorption follows second-order kinetics. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the treated and untreated adsorbents was found to be 11.43 and 4.67 mg g−1, respectively. Thermodynamic parameters showed that the adsorption process was spontaneous and endothermic in the temperature range 32–60°C. Maximum adsorption was found at system pH 4.0. The adsorption mechanism was predominantly ion exchange. Effect of other anions such as phosphate, selenite, molybdate, nitrate, chloride, and sulfate on adsorption of vanadium has been examined.  相似文献   

8.
Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol?g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.  相似文献   

9.
This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 μg L−1, respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 μg L−1) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.  相似文献   

10.
Adsorption of arsenic (V) by natural zeolitic tuff, modified with iron (III), was investigated. Also, the iron (III) adsorption characteristics by natural zeolitic tuff was evaluated. It was determined that iron (III) adsorption by starting zeolitic tuff was best represented by the Freundlich type of isotherm, having correlation coefficient (r 2) of 0.990. Arsenic (V) adsorption by iron (III)-modified zeolitic tuff followed a nonlinear type of isotherm. The best fit of the experimental data was obtained using the Langmuir–Freundlich model (r 2 = 0.99), with the estimated maximum of arsenic (V) adsorption to iron (III)-modified zeolitic tuff of 1.55 mg/g.  相似文献   

11.
This study provides an electrocoagulation process for the removal of metals such as cobalt, copper, and chromium from water using magnesium as anode and galvanized iron as cathode. The various parameters like pH, current density, temperature, and inter electrode distance on the removal efficiency of metals were studied. The results showed that maximum removal efficiency was achieved for cobalt, copper, and chromium with magnesium as anode and galvanized iron as cathode at a current density of 0.025?A?dm?2 at pH 7.0. First- and second-order rate equations were applied to study adsorption kinetics. The adsorption process follows second-order kinetics model with good correlation. The Langmuir and Freundlich adsorption isotherm models were studied using the experimental data. The Langmuir adsorption isotherm favors monolayer coverage of adsorbed molecules for the adsorption of cobalt, copper, and chromium. Temperature studies showed that adsorption was endothermic and spontaneous in nature.  相似文献   

12.
An assessment of exposure to mercury in Changchun city has been undertaken. We estimated Hg exposure to members of the general population based on currently available information and our research. We also studied the Hg concentrations in scalp hair of adults. Adults have an estimated intake of all Hg species via all routes of 6.780 μg day−1 (excluding dental amalgam), which equates to an absorbed dose of 1.718 μg day−1. Fish consumption was the most important exposure route (12% of intake, 43% of absorbed dose). Furthermore, air, cereals and vegetables were important exposure routes, and these exposure were estimated for absorbed dosed at 0.296, 0.209 and 0.318 μg day−1, respectively. The mean Hg concentration in hair was 0.448 μg g−1 (range 0.092–10.463 μg g−1). Hg concentration in the hair of males was 0.422 μg g−1 (0.105–2.665 μg g−1), and was 0.474 μg g−1(0.092–10.463 μg g1) in the hair of females. Neither place of residence nor age had any significant effect on hair Hg concentrations.  相似文献   

13.
The mobility of phenanthrene (PHE) in soils depends on its sorption and is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0, and 10.0 g kg−1. PHE desorption of the treated soils was determined at two pH levels (3.0 and 6.0) and temperatures (15 and 25 °C). Soil PHE adsorption was related to pH and the type and quantity of added HAs. Humic acid (HA) and fulvic acid (FA) derived from peat had different effects on adsorption of PHE. Adsorption increased at first and then decreased with increasing quantity of exogenous FA. When the soil solution pH (in 0.005 M CaCl2) was 4.5 or 3.0, the turning points were 2.5 g FA kg−1 at pH 3.0 and 5 g FA kg−1 at pH 4.5. When soil solution pH was 6, the amount of adsorbed PHE was enhanced with increasing exogenous HAs (HA or FA) and amount of adsorption by soil treated with FA was higher than with HA. Adsorption of PHE in the FA treatment at 10.0 g kg−1 was lower than the controls (untreated soil or treatment with HAs at 0 g kg−1) when the soil solution pH was 3.0. This suggests that FA adsorbed by soil was desorbed at low pH and would then increase PHE solubility, and PHE then combined with FA. PHE adsorption was usually higher under lower pH and/or lower temperature conditions. PHE sorption fitted the Freundlich isotherm, indicating that exogenous humic substances influenced adsorption of phenanthrene, which in turn was affected by environmental conditions such as pH and temperature. Thus, exogenous humic substances can be used to control the mobility of soil PAHs under appropriate conditions to decrease PAH contamination.  相似文献   

14.
In order to know the concentration of mercury in surface sediments, macroalgae and clams from Guaymas Bay, Mexico, 20 surface sediment samples and several individuals of Codium amplivesciculatum (3), Enteromorpha clathrata (4), Gracilaria subsecundata (2), Ulva lactuca (2), Chione subrugosa (80) and Crassostrea gigas (40) were collected and their Hg concentration was measured by a cold vapor Hg analyzer, after acid digestion. In addition, granulometric analysis and quantification of total organic carbon, aluminum, iron and manganese contents in sediments were performed. A Pearsons correlation matrix was determined and, the enrichment factor, the geoaccumulation index and the biota-sediment accumulation factor were calculated. Mercury concentrations in sediments ranged from 0.3 to 2.3 μg g−1, with the central and northern portions showing the highest values. Macroalgae had a content of Hg that oscillated from 0.058 to 0.134 μg g−1, while the average concentrations of this metal for clams and oysters were 0.063 and 0.230 μg g−1, respectively. A clear effect of Guaymas City and the anthropogenic activities carried out around the Guaymas Bay has been observed and the enrichment factor and the geochemical index suggest that sediments from this coastal ecosystem are moderately to strongly contaminated with Hg. However, according to the figure of the maximum human consumption of Hg per week recommended by the World Health Organization, people can ingest clams without risk to their health.  相似文献   

15.
We studied the removal of copper and zinc ions from aqueous solutions using a lignocellulosic substrate obtained by an acido-basic treatment of wheat bran. The sorption capacity of this material was investigated through batch and column experiments. Batch experimental results showed that the retention capacity of the lignocellulosic substrate was 0.20×10–3 mol g–1 at pH 4.5 for copper(II) and 0.24×10–3 mol g–1 at pH 6.5 for zinc(II). Column experiments showed a reduced sorption capacity for both ions compared to batch experiments. Batch and column data were analysed using the Langmuir equation in order to determine the affinity constant and the binding capacity of the sorbent and to compare both retention processes.  相似文献   

16.
The influence of naturally occurring uraniferous black shales on cadmium, molybdenum and selenium concentrations in soils and plants is examined. The possible implications of element concentrations to animal and human health are considered for the Deog-Pyoung area. Geochemical surveys have been undertaken within 13 river tributary valleys in the area underlain by uraniferous black shales and black slates or grey chlorite schists. Sampling of rocks, soils and plants has been carried out along transect lines within each valley. Samples were analysed for trace elements by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and for uranium by Neutron Activation Analysis (NAA). Soil pH, cation exchange capacity, loss on ignition and particle size distribution have been measured for selected samples. Average trace element concentrations of the Okchon uraniferous black shales were 6.3 μg g−1 Cd, 136 μg g−1 Mo and 8.6 μg g−1 Se. Soils derived from these rocks tend to reflect their extreme geochemical composition. Trace element concentrations in alluvial soils derived in part from these black shales averaged 1.2 μg g−1 Cd, 20 μg g−1 Mo and 1.5 μg g−1 Se. Trace element concentrations in plants were found to be influenced by those of soils. Cadmium accumulated in tobacco leaves up to 46 μg g−1 (D.M.) and leafy plants such as lettuce contain up to 0.5 μg g−1 Se (D.M.). In addition to total concentrations in soils, soil pH is a major factor influencing uptake of Mo into crop plants and soil texture for Se. Concentrations of trace elements in plants also varied between plant species. The relative concentrations of Cd were found to vary in the order tobacco > lettuce > red pepper > rice grain. Elevated concentrations of Cd in crop plants and in tobacco may possibly have deleterious effects on human health in this area. The low Cu:Mo ratio in rice stalk of 2.65:1 may be associated with disturbed Cu metabolism in ruminant animals which regularly consume this material.  相似文献   

17.
Leachates from the El Fraile tailings impoundment (Taxco, Mexico) were monitored every 2 months from October 2001 to August 2002 to assess the geochemical characteristics. These leachates are of interest because they are sometimes used as alternative sources of domestic water. Alternatively, they drain into the Cacalotenango creek and may represent a major source of metal contamination of surface water and sediments. Most El Fraile leachates show characteristics of Ca–SO4, (Ca+Mg)–SO4, Mg–SO4 and Ca–(SO4+HCO3) water types and are near-neutral (pH=6.3–7.7). Some acid leachates are generated by the interaction of meteoric water with tailings during rainfall events (pH=2.4–2.5). These contain variable levels of SO4 2− (280–29,500 mg l−1) and As (<0.01–12.0 mg l−1) as well as Fe (0.025–2352 mg l−1), Mn (0.1–732 mg l−1), Zn (<0.025–1465 mg l−1) and Pb (<0.01–0.351 mg l−1). Most samples show the highest metal enrichment during the dry seasons. Leachates used as domestic water typically exceed the Mexican Drinking Water Guidelines for sulfate, hardness, Fe, Mn, Pb and As, while acidic leachates exceed the Mexican Guidelines for Industrial Discharge Waters for pH, Cu, Cd and As. Speciation shows that in near-neutral solutions, metals exist mainly as free ions, sulfates and bicarbonates, while in acidic leachates they are present as sulfates and free ions. Arsenic appears as As(V) in all samples. Thermodynamic and mineralogical evidence indicates that precipitation of Fe oxides and oxyhydroxides, clay minerals and jarosite as well as sorption by these minerals are the main processes controlling leachate chemistry. These processes occur mainly after neutralization by interaction with bedrock and equilibration with atmospheric oxygen.  相似文献   

18.
Fe-Mn binary oxide incorporated into porous diatomite (FMBO-diatomite) was prepared in situ and regenerated in a fixed-bed column for arsenite [As(III)] and arsenate [As(V)] removal. Four consecutive adsorption cycles were operated under the following conditions: Initial arsenic concentration of 0.1 mg·L-1, empty bed contact time of 5 min, and pH 7.0. About 3000, 3300, 3800, and 4500 bed volumes of eligible effluent (arsenic concentration≤0.01 mg·L-1) were obtained in four As(III) adsorption cycles; while about 2000, 2300, 2500, and 3100 bed volumes of eligible effluent were obtained in four As(V) adsorption cycles. The dissection results of FMBO-diatomite fixed-bed exhibited that small amounts of manganese and iron were transferred from the top of the fixed-bed to the bottom of the fixed-bed during As(III) removal process. Compared to the extremely low concentration of iron (<0.01 mg·L-1), the fluctuation concentration of Mn2+ in effluent of the As(III) removal column was in a range of 0.01–0.08 mg·L-1. The release of manganese suggested that manganese oxides played an important role in As(III) oxidation. Determined with the US EPA toxicity characteristic leaching procedure (TCLP), the leaching risk of As(III) on exhausted FMBO-diatomite was lower than that of As(V).  相似文献   

19.
Water-dissolved oxygen was supplied into anaerobic aquifer , which oxidized Fe(II), Mn(II) and trivalent arsenic and changed them into undissolved solid matter through hydrolysis, precipitation, co-precipitation and adsorption processes. The experiment was carried out on the column imitated a bore core of anaerobic aquifer with water phase containing Fe(II), Mn(II), As(III) concentration of 45.12 mg/L, 14.52 mg/L, 219.4 μg/L, respectively and other ions similarly composition in groundwater. After 6 days of air supply, concentration of iron reduced to 0.38 mg/L, manganese to 0.4 mg/L, arsenic to 9.8 μg/L (equivalent 99.16% of iron, 97.25% of manganese and 95.53% of arsenic fixed), and for other ions, the concentration changed almost according to general principles. Ion phosphate and silicate strongly influenced on arsenic removal but supported iron and manganese precipitation from water phase. Based on the experimental results, new model of groundwater exploitation was proposed.  相似文献   

20.
A chelating-modified biosorbent is produced by coupling of a dye, procion red, to yeast cells. The resulting modified cells have been characterized by Fourier transform infrared, elemental analysis and thermogravimetric analysis and studied for preconcentration and determination of trace Sm(III). The optimum pH value for sorption of the samarium ions is 6.2. The sorption capacity of functionalized modified yeast cells is 7.2 mg g?1. Recovery was 99% when Sm(III) was eluted with an aqueous solution of 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis suggested that binding sites were homogeneous. The equilibrium data were analyzed using Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models, and the respective constants were determined as 1.0 (L mg?1), 2.9 [(mg g?1) (L mg?1)1/n], 2.4 × 108 (L g?1), and 30 (dm3 g?1) at 20 °C. The method was applied for an Sm(III)-containing sample of ceramic industry effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号