首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
南京市大气气溶胶中酞酸酯的分布特征   总被引:3,自引:1,他引:2  
王平  陈文亮  蔡维维 《环境化学》2004,23(4):447-450
利用分级采样器采样 ,高效液相色谱检测 ,研究了南京市春夏秋冬四季六大功能区 (工业区 ,交通区 ,文化区 ,商业区 ,园林风景区和居民生活区 )大气气溶胶中的酞酸酯 .结果表明 :南京市大气气溶胶中检出的酞酸酯有 :邻苯二甲酸二甲酯 (DMP)、邻苯二甲酸二丁酯 (DBP)和邻苯二甲酸二辛酯 (DEHP) ,其含量随功能区和季节而变化 ,平均浓度具有工业区 >居民区 >交通区 >商业区 >文化区 >园林风景区和秋、冬季浓度高于春、夏季的分布特征  相似文献   

2.
气溶胶中正构烷烃的碳优先指数研究   总被引:9,自引:0,他引:9  
本文研究了北京、广州两地不同季节气溶胶颗粒物上正构烷烃的碳优先指数值(CPI)随季节和颗粒物粒径的变化规律。结果表明,北京地区气溶胶中正构烷烃的CPI值:春>夏>秋>冬;广州地区为冬>春>夏,显示了不同的地区特征,而且随着气溶胶颗粒物粒径的减小,正构烷烃的CPI值亦减小。  相似文献   

3.
为了解唐山市大气气溶胶中有机物的污染现状,于2010年9月—2011年8月利用安德森8级撞击采样器在河北省唐山市采集了大气颗粒物样品,采用GC/MS法对细粒子(PM_(2.1))和粗粒子(PM_(2.1))中的19种(C14—C32)正构烷烃进行了定量分析.结果表明,PM_(2.1)和PM_(2.1)中正构烷烃年均浓度分别为632.6 ng·m~(-3)和445.6 ng·m~(-3),主要富集在细粒子中,质量浓度季节变化规律为冬春秋夏;细粒子中,春、夏、秋、冬主峰碳(Cmax)分别为C29、C27、C21和C21;粗粒子中,春、夏、秋、冬Cmax分别为C31、C27、C22和C22,粗细粒子中碳优势指数(CPI)在1左右,说明唐山地区正构烷烃的污染主要受人为源影响很大.粗细粒子植物蜡贡献率分别为2.19%—57.62%和0.83%—49.87%,夏季植物蜡分布值最大,冬季最小,表明夏季植物源对正构烷烃的贡献相对较大,冬季正构烷烃的排放主要来源于人为活动(汽车尾气、化石燃料燃烧等),植物源贡献相对较少.  相似文献   

4.
气溶胶存在巨大时空变化特征,对其辐射效应的评估仍存在很大的不确定性,有效的评估很大程度地依赖于气溶胶光学特性。华中地区气溶胶水平长期以来居高不下,然而对这一区域的气溶胶光学特性研究存在很大的缺口。利用MODIS C6数据集的气溶胶产品(MYD04_L2)对湖北省2002—2016年气溶胶光学特性的时空变化情况进行分析,并提取武汉周边地区气溶胶光学参数及大气柱气溶胶质量浓度,对其时间变化特征进行分析。结果表明,整个湖北省气溶胶光学厚度(AOD)、细粒子比(FMF)、气溶胶柱质量浓度(AMC)均呈现显著的高低值分界线,与湖北东西部的地势和人口密集程度差异有关。其中,AOD与AMC高低值的范围相似,而FMF的高、低值区与AOD、AMC分布相反。AOD季节上呈现春夏高、秋冬低的态势;然而,夏季AMC值最小,这表明夏季AOD高值是由气溶胶吸湿性增长作用增强引起的。受局地扬沙和远距离沙尘输送影响,春季鄂中南部存在远高于其他三季的大范围AOD和AMC高值区。FMF高值出现在夏秋两季,与二次气溶胶增长有关;最低值出现在冬季,武汉及荆州周边地区FMF值最低,受人为排放的粗模态粒子增加和偶发性沙尘天气共同作用。武汉地区气溶胶光学厚度和柱质量浓度呈逐年下降趋势,其中AOD在2008年以前逐年上升,而在2010年以后以每年0.05的幅度下降;FMF和AOD月平均最大值均出现在2010年6月。  相似文献   

5.
应用2001—2010年 MODIS 大气气溶胶光学厚度(AOD)资料,分析中国550 nm AOD 年和季节平均分布.还选取了10个代表性区域,分析 AOD 变化特征.这些分析建立起了近10年来中国气溶胶光学厚度的气候学特征:中国年平均AOD 空间区域分布中心大体呈现两低两高.两低中心位于植被覆盖度高和人烟稀少的(1)黑龙江和内蒙古东北高纬度地区(~0.2);(2)川、滇与青藏高原交界的西南高海拔地区(0.1~0.2).一个 AOD 低值带(0.2~0.3)连接这两个低中心,呈东北西南走向跨过中国大陆.在此低值带两侧,各有一片 AOD 高值中心(~0.8):(1)人口密集和工业化发展带来的大量人为气溶胶形成了一个覆盖了华北、长江流域(从四川盆地,两湖地区到长三角)到华南珠江三角洲相联的大片高 AOD 中心区域;(2)以沙尘为主的自然气气溶胶造就了西北塔克拉玛干沙漠及周边高 AOD 区.中国 AOD 这一两低两高区域分布特征基本保持四季不变,但其中心强度呈现各自区域性季节变化.中国春季 AOD 高值区的面积最大,其次是夏季,然后是秋季,面积最小的是冬季.南方 AOD 月变化规律多为双峰型,即3—5和8—9月出现2次高峰,5—7月从南向北先后出现波谷,变化规律与季风响应.北方为单峰型,6—7月为高峰,11到来年2月为低谷.用弱季风年(2002)和强季风年(2003)季风影响区域气象条件和气溶胶数据对比分析表明,大陆 AOD 的月空间分布和变化与季风气候,以及风速、风向、降水、温度和湿度等的变化有关  相似文献   

6.
本研究在四川农业大学成都校区设立采样点,分别于春、夏、秋、冬的四季代表时间段采集PM_2.5样品.在实验室应用电感耦合等离子体原子发射光谱仪(inductively coupled plasma-atomic emission spectroscopy,ICP-AES)测定样本中硫的总量;同时,利用离子色谱测定细粒子中硫酸盐的含量,探讨大气PM_2.5中含硫化合物的季节变化,气象因子以及污染天气对含硫化合物的影响.研究表明,大气细颗粒中总硫、有机硫、硫酸根的年浓度值分别为5.41±3.61、1.46±1.54、11.85±7.23μg·m~(-3).有机硫占总硫的比值春季为15.6%±10.2%,夏季为27.1%±14.0%,秋季为27.5%±21.7%,冬季为22.4%±13.3%.有机硫占总硫的平均比值夏、秋两季略高于春、冬两季,说明温暖的气候有利于气溶胶中硫酸盐转化为有机硫.冬季污染天气下有机硫/总硫的比值为28.2%±12.4%,明显高于非污染天气下有机硫/总硫的平均比值14.2%±10.9%.硫酸盐和有机物在大气颗粒物中的汇聚,有机和无机污染物浓度同时增多,可促使PM_2.5中有机硫化合物的形成.  相似文献   

7.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

8.
龙凤山大气气溶胶散射特性观测分析   总被引:1,自引:0,他引:1  
利用2018年龙凤山区域大气本底站(简称龙凤山站)气溶胶散射系数、PM10质量浓度及常规气象观测资料,研究了东北本底地区气溶胶散射系数的变化特征.结果表明,2018年龙凤山站3个波长下气溶胶散射系数的均值为(194.1±202.4)Mm-1(450 nm)、(133.4±139.2)Mm-1(550 nm)、(81.8±85.3)Mm-1(700 nm).龙凤山地区散射系数具有明显的日变化特征,且不同季节的日变化特征具有较大区别.龙凤山地区地处相对洁净的背景地区,气溶胶散射系数水平相对较低,春季受局地及长距离风沙的影响散射系数均值较高,冬季东北地区采暖燃烧排放量比较大,大气层相对稳定,不利于气溶胶污染物的扩散,冬季气溶胶散射系数最高.夏秋季受湿沉降与植被条件的影响气溶胶散射系数最低.散射系数与PM10质量浓度相关性较好,相关系数r为0.82.龙凤山PM10的质量散射效率为3.6 m2·g-1(550 nm).2018年龙凤山PM10气溶胶的散射Angstrom指数(SAE)平均值为1.96±0.25,表明在观测期间气溶胶主要是以较小的粒子主导,夏季的SAE最大,秋季的SAE最低,春季和冬季居中.  相似文献   

9.
北京怀柔科学城的建设加快了区域城市化的进程.为探究此过程对空气质量的影响,于2018年在怀柔地区采集了大气PM2.5样品,分析了 PM2.5中环境持久性自由基(environmental persistent free radicals,EPFRs)及其共存组分的季节变化特征.结果表明,冬、春、夏、秋四季EPFRs的浓...  相似文献   

10.
近10年中国大陆MODIS遥感气溶胶光学厚度特征   总被引:13,自引:0,他引:13  
应用2001—2010年MODIS大气气溶胶光学厚度(AOD)资料,分析中国550 nm AOD年和季节平均分布。还选取了10个代表性区域,分析AOD变化特征。这些分析建立起了近10年来中国气溶胶光学厚度的气候学特征:中国年平均AOD空间区域分布中心大体呈现两低两高。两低中心位于植被覆盖度高和人烟稀少的(1)黑龙江和内蒙古东北高纬度地区(~0.2);(2)川、滇与青藏高原交界的西南高海拔地区(0.1~0.2)。一个AOD低值带(0.2~0.3)连接这两个低中心,呈东北西南走向跨过中国大陆。在此低值带两侧,各有一片AOD高值中心(~0.8):(1)人口密集和工业化发展带来的大量人为气溶胶形成了一个覆盖了华北、长江流域(从四川盆地,两湖地区到长三角)到华南珠江三角洲相联的大片高AOD中心区域;(2)以沙尘为主的自然气气溶胶造就了西北塔克拉玛干沙漠及周边高AOD区。中国AOD这一两低两高区域分布特征基本保持四季不变,但其中心强度呈现各自区域性季节变化。中国春季AOD高值区的面积最大,其次是夏季,然后是秋季,面积最小的是冬季。南方AOD月变化规律多为双峰型,即3—5和8—9月出现2次高峰,5—7月从南向北先后出现波谷,变化规律与季风响应。北方为单峰型,6—7月为高峰,11到来年2月为低谷。用弱季风年(2002)和强季风年(2003)季风影响区域气象条件和气溶胶数据对比分析表明,大陆AOD的月空间分布和变化与季风气候,以及风速、风向、降水、温度和湿度等的变化有关。  相似文献   

11.
2015年9月至2016年7月在新疆独山子区采集大气PM_(2.5)样品,对所含的水溶性无机离子和大气气态污染物的季节性变化进行了分析.其结果表明,PM_(2.5)、SO_2、NO_2和O_3的年均浓度分别为70.04、19.36、4.50、83.06μg·m~(-3); PM_(2.5)、SO_2、NO_2的浓度均出现冬季最高,夏季最低的趋势,而O_3浓度在春、夏季节偏高,冬季偏低;总水溶性无机离子的季节变化特征为冬季(68.99μg·m~(-3))秋季(14.23μg·m~(-3))春季(10.31μg·m~(-3))夏季(5.06μg·m~(-3)),其中SO_2~(-4)、NO_3~-、NH_4~+为水溶性无机离子的主要组成部分,占到水溶性总离子质量浓度的70%以上.对硫氧化率(SOR)和氮氧化率(NOR)的估算表明,全年SOR的值均大于0.1,表明SO_2~(-4)主要来自大气二次转化.夏季NOR值远低于其它季节. SO_2~(-4)浓度和SOR在冬季出现较高值,可能是由于冬季取暖导致SO_2排放量增加,同时较高的相对湿度又促进了SO_2的非均相转化.受相对湿度的影响,NO_3~-在冬季主要以非均相反应的方式生成,在春、夏、秋的3个季节主要以均相反应的方式生成;当PM_(2.5)的质量浓度大于75μg·m~(-3)时,NO_3~-/SO_2~(-4)、NOR/SOR和NOR值均显著增加,表明独山子区的硝酸盐污染较为严重.  相似文献   

12.
利用乌鲁木齐市中心区域气象局和黑山头2013年1月1日-2014年2月28日期间Grimm180在线监测数据,对乌鲁木齐市大气气溶胶数浓度和PM_(2.5)质量浓度的分布特征及其影响进行了分析,为深入了解乌鲁木齐市颗粒物污染现状,确定乌鲁木齐市大气污染治理重点,制定大气污染防治规划提供依据。结果表明,(1)气象局和黑山头气溶胶数浓度分布趋势一致,0.25~0.28μm之间的粒子数浓度最大;整体趋势表现为双峰型,第1峰出现在0.30~0.35μm之间,峰值分别为467.0和455.4 particle·cm~(-3);第2峰出现在4.0~5.0μm之间,峰值较小;粒径小于2.5μm的粒子数占到了粒子总数的99.88%;在粒径0.25~0.45μm范围内冬季气溶胶粒子数浓度最高,在粒径0.45μm范围内秋季气溶胶粒子数浓度最高;在粒径0.25~1μm范围内夏季气溶胶粒子数浓度最低,在粒径1μm范围内冬季数浓度最低;0.25~0.5μm粒径段内粒子占粒子总数的比例大小顺序为冬春夏秋;0.8~2.5μm之间不同粒径段的粒子占粒子总数的比例大小顺序为夏秋春冬;PM_(2.5)数浓度小时变化采暖期表现为双峰型,非采暖期为不太明显的三峰型。(2)观测期间气象局和黑山头PM_(2.5)平均质量浓度分别为61.77,43.42μg·m~(-3),日平均值超标率分别是30.81%和16.44%。采暖期气象局PM_(2.5)质量浓度小时变化呈现单峰,在19:00─21:00出现峰值;黑山头则呈现双峰,在6:00-8:00出现峰值,20:00出现一个不太明显的小峰;非采暖期气象局与黑山头PM_(2.5)质量浓度小时变化趋势一致,均表现为双峰型。两个站点PM_(2.5)质量浓度的季节变化均表现为冬季秋季春季夏季,特殊的地理位置和不同季节污染源的排放强度、气象条件是导致PM_(2.5)质量浓度随季节变化的主要原因。  相似文献   

13.
近年来长江流域气溶胶光学厚度时空变化特征分析   总被引:6,自引:0,他引:6  
利用2000年3月至2011年2月MODIS Level3遥感反演大气气溶胶光学厚度(AOD)产品数据,结合中国地形的3大阶梯分布,分析近年来长江流域气溶胶光学厚度的时空变化特征。结果表明,近12年来,长江流域的年平均AOD值在0.38,~,0.44之间变化,其中“第一阶梯”年平均AOD呈极显著下降趋势(P〈0.01),“第二阶梯”和“第三阶梯”则呈上升趋势,但趋势不显著(P〉0.05);4季平均AOD除春季呈下降趋势,其他3季均为上升趋势,其中冬季上升速率最快,线性倾向率为0.004·a-1(P〈0.05),春季AOD与其他季节的差距在逐步减小;长江流域3大阶梯AOD具有鲜明的季节变化特征,基本上是春夏季较大,秋冬季较小,具体表现为春季最大,从夏季到冬季逐渐减小,冬季到来年春季跳跃性增高,但由于地理位置、地形、气候、人类活动等因素的影响,不同区域又有所差异;AOD年平均值和四季平均值均表现为“第三阶梯”〉“第二阶梯”〉“第一阶梯”。长江流域年平均AOD变化空间差异显著,其中显著减少区域占整个流域面积的17.54%,主要分布在“第一阶梯”;显著增加的区域仅占流域总面积的5.23%,主要分布在“第二阶梯”和“第三阶梯”。另外,由于海拔、地形及山脉阻挡等诸多因素影响,导致在地形阶梯间高程突变线左右两边的狭窄区域,AOD分布存在低处明显大于高处的现象。这些结果有助于长江流域的区域气候变化和环境研究。  相似文献   

14.
近10年中国大陆MODlS遥感气溶胶光学厚度特征   总被引:1,自引:0,他引:1  
应用2001-2010年MODIS大气气溶胶光学厚度(AOD)资料,分析中国550nmAOD年和季节平均分布。还选取了10个代表性区域,分析AOD变化特征。这些分析建立起了近10年来中国气溶胶光学厚度的气候学特征:中国年平均AOD空间区域分布中心大体呈现两低两高。两低中心位于植被覆盖度高和人烟稀少的(1)黑龙江和内蒙古东北高纬度地区(-0.2);(2)川、滇与青藏高原交界的西南高海拔地区(0.1-0.2)。一个AOD低值带(0.2-0.3)连接这两个低中心,呈东北西南走向跨过中国大陆。在此低值带两侧,各有一片AOD高值中心(-0.8):(1)人口密集和工业化发展带来的大量人为气溶胶形成了一个覆盖了华北、长江流域(从四川盆地,两湖地区到长三角)到华南珠江三角洲相联的大片高AOD中心区域;(2)以沙尘为主的自然气气溶胶造就了西北塔克拉玛干沙漠及周边高AOD区。中国AOD这一两低两高区域分布特征基本保持四季不变,但其中心强度呈现各自区域性季节变化。中国春季AOD高值区的面积最大,其次是夏季,然后是秋季,面积最小的是冬季。南方AOD月变化规律多为双峰型,即3-5和8-9月出现2次高峰,5-7月从南向北先后出现波谷,变化规律与季风响应。北方为单峰型,6-7月为高峰,11到来年2月为低谷。用弱季风年(2002)和强季风年(2003)季风影响区域气象条件和气溶胶数据对比分析表明,大陆AOD的月空间分布和变化与季风气候,以及风速、风向、降水、温度和湿度等的变化有关。  相似文献   

15.
多环芳烃(PAHs)是大气颗粒物中重要的有机污染物,由于其致癌、致突变特性而广受关注。部分分子量大于300的高分子量多环芳烃(HMW-PAHs)已被发现具有很强的毒性,但目前对于HMW-PAHs的研究仍非常有限。为了解上海大气细颗粒物中HMW-PAHs的浓度、组成和毒性,使用大流量采样器于2013年4月—2014年4月期间采集了上海大气PM_(2.5)样品,利用GC-MS分析了其中19种分子量为302的高分子量多环芳烃(∑302PAHs)的质量浓度、组成及其季节变化。结果表明,上海PM_(2.5)中∑302PAHs的质量浓度具有显著的季节变化,春、夏、秋、冬季的平均质量浓度分别为2.2、1.4、2.1和9.7 ng?m~(-3),但302-PAHs的同分异构体组成没有明显的季节变化。HMW-PAHs不具挥发性,而低分子量PAHs在大气中的赋存状态受气-粒分配的影响,因此上海PM_(2.5)中∑302PAHs质量浓度占全部PAHs的比例呈现明显的季节变化,夏季(19%)显著高于秋季(12%)和冬季(11%)。5种具有明显致癌毒性的二苯并芘异构体DalB P、N23e P、DBae P、DBai P和DBah P在整个采样期间的平均质量浓度分别为44、1.6×10~2、3.4×10~2、43和5.2 pg?m~(-3);上述5种302-PAHs的苯并[a]芘毒性当量浓度(Ba Peq)占全部PAHs的Ba Peq的比例在春、夏、秋、冬四季分别为23%、47%、21%和21%。初步估算表明,2013—2014年采样期间上海∑302PAHs的平均大气干沉降通量为133 ng?m~(-2)?d~(-1),年累计干沉降量约304 kg。因此,在进行大气多环芳烃风险评估时有必要将具有明显毒性的5种302-PAHs纳入。研究结果可为大气细颗粒物环境影响评价提供一定的基础数据。  相似文献   

16.
气溶胶散射特性对了解气溶胶的辐射效应具有重要意义。为进一步了解南京北郊秋冬季气溶胶散射特性,利用积分浊度仪观测了2015年和2016年秋冬季大气气溶胶散射系数,对比分析了秋冬季气溶胶散射系数的变化特征,并对散射特性相关参数Angstrom波长指数、后向散射比和不对称因子进行了讨论。结果表明,2015年1月平均气溶胶散射系数达到(359.52±254.24) Mm~(-1),是2016年秋冬季平均散射系数(98.95±36.13) Mm~(-1)的3.6倍,最高日平均散射系数可达877.6 Mm~(-1)。2015年冬季气溶胶散射系数频率分布范围较广(52-1 363 Mm~(-1)),而2016年秋冬季气溶胶散射系数主要集中在160 Mm~(-1)以下的低值区。气溶胶散射系数日变化在2015年冬季呈"三峰型"分布;而在2016年秋冬季呈"双峰型"分布。南京北郊2015年1月、2016年秋季和冬季气溶胶Angstrom波长指数平均值分别为1.08、1.3和1.2,由此可知2016年秋冬季的气溶胶粒子以细粒子为主控粒子,而2015年冬季颗粒物粒径相对较大。2015年1月气溶胶粒子的后向散射比(0.097±0.006)低于2016年秋冬季的值(0.123±0.009),表明2015年冬季气溶胶中含有一定比例粒径较粗的粗颗粒物(粒径1.5μm),而2016年秋冬季气溶胶粒子以粒径小于1.5μm的细粒子为主。其中2015年1月不对称因子高于0.67的样本约占总样本量的70%;而2016年秋冬季不对称因子主要集中在0.55-0.65之间,说明2015年冬季气溶胶粒子的粒径相对较大,且气溶胶粒子的散射以前向散射为主。  相似文献   

17.
气溶胶光学特性是研究气溶胶气候效应的基础,气溶胶辐射强迫估算中最大的不确定性源于对气溶胶光学特性估算的不确定性,详细了解气溶胶光学特性尤其是典型污染天气下的光学特性对研究气溶胶辐射强迫估算具有重要意义。为深入了解香河地区大气气溶胶光学特性,利用AERONET数据资料研究了香河冬、春季节气团来向、气溶胶光学厚度(AOD)以及气溶胶的类型,对比分析了春季沙尘和冬季雾霾天气条件下大气气溶胶光学性质的差异。结果表明:移动速度较慢的气团伴随着高AOD(AOD1.0),而移动速度快的气团伴随着较低的AOD(AOD0.5)。Gobbi气溶胶图解法分析显示,香河站沙尘和细粒子气溶胶都会产生高光学厚度。香河沙尘和雾霾期间粗、细粒子消光占比差异明显,其中细粒子消光分别占总消光的40%和95%,说明雾霾天气发生时细粒子消光对总消光具有重要贡献。沙尘期间,平均AOD稍高于雾霾天气,其中高AOD(1.0)出现的频率达到86%,说明沙尘天大量的粗粒子对总消光具有强烈贡献。两种污染天气下的AOD和Angstrom波长指数(AE)的关系明显不同,其中雾霾污染下的AE随AOD增大表现出缓慢减小的趋势,而沙尘期间AE随AOD变化复杂,当AOD大于1.8时,AE约为0.05。沙尘期间,平均AE为0.45,其中低于0.1和大于0.6的AE分别占41%和32%,表明香河作为沙尘下游地区,沙尘发生时气溶胶主要源于长距离传输的粗粒子和局地产生的细颗粒的共同贡献。雾霾天气下平均AE(1.19)是沙尘天的2倍多,其中大于0.9的AE频率分布高达93%,说明香河雾霾期间气溶胶以细粒子为主。研究结果对香河地区大气污染控制具有重要作用,可为京津冀地区大气污染治理及气溶胶气候效应研究提供参考依据。  相似文献   

18.
在对环境细颗粒物进行治理的过程中,一些地区随着PM_(2.5)下降而出现O_3浓度增加的现象。分析两者的变化规律和影响因素,对云贵高原大气PM_(2.5)和O_3治理具有参考意义。利用贵阳2013—2017年PM_(2.5)与O_3监测数据及太阳辐射、温度等气象观测资料,采用对比观测方法分析大气复合污染中PM_(2.5)和O_3在不同季节相互作用的机理和变化特征。结果表明:不同气象条件下,PM_(2.5)和O_3的相互作用表现为:夏季,高浓度的O_3在较强的大气氧化条件下可促进二次颗粒物形成,增加环境中PM_(2.5)的浓度水平,两者表现为正相关(r=0.609,P0.01);冬季,较高浓度的PM_(2.5)削弱了太阳辐射,同时抑制O_3的产生,两者表现为负相关(r=-0.373,P0.01)。PM_(2.5)与O_3在不同季节的相互作用机理受温度和太阳辐射等气象因素影响,夏季光化学反应速率较高,O_3二次生成浓度相对较高,且多种污染物共存;冬季,采暖期细粒子排放增加,大气层结稳定促使PM_(2.5)在大气中累积,导致气溶胶光学厚度增大,削弱了到达地面的太阳辐射,加之贵阳冬季太阳辐射只相当于夏季的2/5,抑制了生成O_3的光化学反应,空气污染以PM_(2.5)为主。综上,贵阳大气复合污染的季节变化可由大气环境中PM_(2.5)和O_3的季节性相互作用决定。  相似文献   

19.
焦作市大气颗粒物中水溶性砷的分布特征   总被引:1,自引:0,他引:1  
利用原子荧光法对焦作市春、夏、秋、冬四季不同粒径大气颗粒物中水溶性重金属砷的分布特征及时空变化进行分析研究。研究表明:焦作市水溶性砷主要富集在PM2.1中,且颗粒物粒径越小,其富集砷的能力就越强,各级颗粒物中4级、5级、6级(0.41~2.1μm)范围内砷的含量最高,其总含量约为5.71~19.96 ng/m3,三者在不同月份所占比例高达73%~86%;由于形成机制与影响条件不同,不同粒径大气颗粒物中砷表现出明显的季节变化特征,总体趋势为冬季〉秋季〉夏季〉春季,主要原因为冬、夏季燃煤量增加,春季大气污染源减少,地表植被覆盖密集,空气环境质量较好;燃煤是焦作大气中砷的主要来源之一,且其对大气细颗粒物(粒径≤2.1μm)中砷的贡献最明显。  相似文献   

20.
云贵高原地形地貌复杂,探讨其气溶胶区域分布的时空差异性,对不同区域科学制定生态文明建设政策具有重要意义。利用2001年以来的MODIS 3 km分辨率气溶胶光学厚度数据,综合运用空间插值、趋势分析等方法探讨了云贵高原2001-2016年气溶胶光学厚度的区域分布和气候特征。结果表明,较高分辨率的3 km气溶胶数据显示出高原气溶胶的不同梯度空间分布和时间变化特征。以乌蒙山脉为界,高原多年平均AOD空间分布呈东高西低的分布特征,其中东部年平均AOD约为0.32,西部约为0.13。年平均AOD高值区(0.6)位于贵州省与四川盆地相邻的北部(包括遵义市、铜仁市)、与广西毗邻的东南部,以及省会城市贵州贵阳和云南昆明;高值区分布主要受人类活动、区域传输和地形所影响。季节平均表明,云贵高原东西部AOD高值的出现季节不完全同步,高原东部春季和冬季最高,高原西部春季最高,冬季最低。从相邻的两个强弱季风年来看,其与常年距平的反相位分布可能反映季风强度对气溶胶年际变化的影响。变化趋势上,高原年平均AOD呈现下降趋势,下降趋势率为-0.021/10a,但其中2001-2011年期间为波动上升,2011-2016年呈现显著下降,下降趋势率为-0.33/10a。高原东西部年AOD下降的速率有较大区别,高原东部的下降幅度明显大于西部,下降趋势率分别为-0.059/10a和-0.003/10a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号