首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct multicomponent analysis of malodorous volatile organic compounds (VOCs) present in ambient air samples from 29 swine (Sus scrofa) production facilities was used to develop a 19-component artificial swine odor solution that simulated olfactory properties of swine effluent. Analyses employing either a human panel consisting of 14 subjects or gas chromatography were performed on the air stream from an emission chamber to assess human olfactory responses or odorant concentration, respectively. Analysis of the olfactory responses using Fisher's LSD statistics showed that the subjects were sensitive to changes in air concentration of the VOC standard across dilutions differing by approximately 16%. The effect of chemical synergisms and antagonisms on human olfactory response magnitudes was assessed by altering the individual concentration of nine compounds in artificial swine odor over a twofold concentration range while maintaining the other 18 components at a constant concentration. A synergistic olfactory response was observed when the air concentration of acetic acid was increased relative to the concentration of other VOC odorants in the standard. An antagonistic olfactory response was observed when the air concentration of 4-ethyl phenol was increased relative to the other VOC odorants in the standard. The collective odorant responses for nine major VOCs associated with swine odor were used to develop an olfactory prediction model to estimate human odor response magnitudes to swine manure odorants through measured air concentrations of indicator VOCs. The results of this study show that direct multicomponent analysis of VOCs emitted from swine effluent can be applied toward estimating perceived odor intensity.  相似文献   

2.
The National Research Council identified odors as a significant animal emission and highlighted the need to develop standardized protocols for sampling and analysis. The purpose of our study was to compare different odor sampling techniques for monitoring odors emitted from stored swine manure. In our study, odorous headspace air from swine manure holding tanks were analyzed by human panels and analytical techniques. Odorous air was analyzed by human panels using dynamic dilution olfactometry (DDO). Chemical analysis used acid traps for ammonia (NH?), fluorescence for hydrogen sulfide (H?S), and thermal desorption gas chromatography-mass spectrometry for volatile organic compounds (VOCs). Chemical analysis included the use of gas chromatography-olfactometry (GC-O) for determining key odorants. Chemical odorant concentrations were converted to odor activity values (OAVs) based on literature odor thresholds. The GC-O technique used was GC-SNIF. Dilution thresholds measured by different odor panels were significantly different by almost an order of magnitude even though the main odorous compound concentrations had not changed significantly. Only 5% of the key odorous VOCs total OAVs was recovered from the Tedlar bags used in DDO analysis. Ammonia was the only chemical odorant significantly correlated with DDO analysis in the fresh (1 wk) and aged manure. Chemical analysis showed that odor concentration stabilized after 5 to 7 wk and that HS was the most dominant odorant. In aged manure, neither volatile fatty acids (VFAs) nor HS was correlated with any other chemical odorant, but NH, phenols, and indoles were correlated, and phenols and indoles were highly correlated. Correlation of odorant concentration was closely associated with the origin of the odorant in the diet. Key odorants determined by chemical and GC-O included indoles, phenols, NH?, and several VFAs (butanoic, 3-methylbutanoic, and pentanoic acids).  相似文献   

3.
Poultry operations are associated with emissions of aerial ammonia (NH3), volatile organic compounds (VOCs), and odor, and the magnitude of emissions is influenced by manure management practices. As a manure treatment additive, zeolites have been shown to have the potential to control NH3. Because of their properties it is also expected that zeolites could effectively adsorb VOCs and odor. The effectiveness of zeolite in controlling odor and VOCs was qualitatively evaluated in this controlled laboratory study involving simulated poultry manure storage. In the first two trials, zeolite was topically applied on nearly fresh laying hen manure at the rates of 0, 2.5, 5, and 10% (by weight). In the third trial, zeolite was topically applied at 5% with each addition of fresh manure into the storage vessel. Headspace samples from the emission vessels were collected with solid phase microextraction (SPME) and analyzed on a multidimensional-gas chromatograph-mass spectrometry-olfactometry (MDGC-MS-O) system for identification and prioritization of poultry manure odorants. Acetic acid, butanoic acid, isovaleric acid, indole, and skatole were consistently controlled in the headspace, with the reduction rate being proportional to the zeolite application rate. Dimethyl trisulfide and phenol were consistently generated, and with a few exceptions, the rate of generation was proportional to the application rate. Average reduction of the odor caused by all odorants evaluated with SPME-GC-O was 67% (+/-12%) and 51% (+/-26%) for the two topical applications, respectively, while no significant reduction of VOCs and odor was detected for the layered application.  相似文献   

4.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

5.
Swine manure is associated with emissions of odor, volatile organic compounds (VOCs) and other gases that can affect air quality on local and regional scales. In this research, a solid phase microextraction (SPME) and novel multidimensional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system were used to simultaneously identify VOCs and related odors emitted from swine manure. Gas samples were extracted from manure headspace using Carboxen/polydimethylsiloxane (PDMS) 85-microm SPME fibers. The MDGC-MS-O system was equipped with two columns in series with a system of valves allowing transfer of samples between columns (heartcutting). The heartcuts were used to maximize the isolation, separation, and identification of compounds. The odor impact of separated compounds was evaluated by a trained panelist for character and intensity. A total of 295 compounds with molecular weights ranging from 34 to 260 were identified. Seventy one compounds had a distinct odor. Nearly 68% of the compounds for which reaction rates with OH* radicals are known had an estimated atmospheric lifetime <24 h.  相似文献   

6.
Animal husbandry and manure treatment have been specifically documented as significant sources of methane, ammonia, nitrous oxide, and particulate matter. Although volatile organic compounds (VOCs) are also produced, much less information exists concerning their impact. We report on chemical ionization mass spectrometry and photo-acoustic spectroscopy measurements of mixing ratios of VOCs over a 2-wk measurement period in a large cowshed at the Federal Agricultural Research Centre (FAL) in Mariensee, Germany. The high time resolution of these measurements enables insight into the sources of the emissions in a typical livestock management setting. During feeding hours and solid manure removal, large mixing ratio spikes of several VOCs were observed and correlated with simultaneous methane, carbon dioxide, and ammonia level enhancements. The subsequent decay of cowshed concentration due to passive cowshed ventilation was used to model emission rates, which were dominated by ethanol and acetic acid, followed by methanol. Correlations of VOC mixing ratios with methane or ammonia were also used to calculate cowshed emission factors and to estimate potential nationwide VOC emissions from dairy cows. The results ranged from around 0.1 Gg carbon per year (1 Gg = 10(9) g) for nonanal and dimethylsulfide, several Gg carbon per year for volatile fatty acids and methanol, to over 10 Gg carbon per year of emitted ethanol. While some estimates were not consistent between the two extrapolation methods, the results indicate that animal husbandry VOC emissions are dominated by oxygenated compounds and may be a nationally but not globally significant emission to the atmosphere.  相似文献   

7.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   

8.
Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.  相似文献   

9.
Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.  相似文献   

10.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

11.
Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.  相似文献   

12.
Odor and gas release from anaerobic lagoons for treating swine waste affect air quality in neighboring communities but rates of release are not well documented. A buoyant convective flux chamber (BCFC) was used to determine the effect of lagoon loading rate on measured odor and gas releases from two primary lagoons at a simulated wind speed of 1.0 m s(-1). Concentrations of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NO) in 50-L air samples were measured. A panel of human subjects, whose sensitivity was verified with a certified reference odorant, evaluated odor concentration, intensity, and hedonic tone. Geometric mean odor concentrations of BCFC inlet and outlet samples and of downwind berm samples were 168 +/- 44 (mean +/- 95% confidence interval), 262 +/- 60, and 114 +/- 38 OU(E) m(-3) (OU(E), European odor unit, equivalent to 123 microg n-butanol), respectively. The overall geometric mean odor release was 2.3 +/- 1.5 OU(E) s(-1) m(-2) (1.5 +/- 0.9 OU s(-1) m(-2)). The live mass specific geometric mean odor release was 13.5 OU(E) s(-1) AU(-1) (animal unit = 500 kg live body mass). Overall mean NH3, H2S, CO2 and SO2 releases were 101 +/- 24, 5.7 +/- 2.0, 852 +/- 307, and 0.5 +/- 0.4 microg s(-1) m(-2), respectively. Nitric oxide was not detected. Odor concentrations were directly proportional to H2S and CO2 concentrations and odor intensity, and inversely proportional to hedonic tone and SO2 concentration (P < 0.05). Releases of NH3, H2S, and CO2 were directly proportional (P < 0.05) to volatile solids loading rate (VSLR).  相似文献   

13.
Pathogens, ammonia, odor, and greenhouse gas emissions are serious environmental concerns associated with swine production. This study was conducted in two manure pits (33,000 L each) to determine the influence of 1.5 or 3.0 g thymol L(-1) and 80 mg L(-1) urease inhibitor amendments on urea accumulation, coliform bacteria, odor, and methane emission. Each experiment lasted 18 or 19 d, during which time 30 to 36 250-mL samples (six per day) were withdrawn from underneath each pit and analyzed for urea, thymol, volatile fatty acids, coliform bacteria, and Campylobacter. At the end of each experiment, six 50-g samples from each pit were placed in serum bottles, and gas volume and composition were determined periodically for 28 d. Compared with the control pit, volatile fatty acids production was reduced 64 and 100% for the thymol amendments of 1.5 and 3.0 g L(-1), respectively. Viable coliform cells were reduced 4.68 and 5.88 log10 colony-forming units kg(-1) of slurry for the 1.5 and 3.0 g thymol L(-1), respectively, and Escherichia coli were reduced 4.67 and 5.01 log10 colony-forming units kg(-1) of slurry, respectively. Campylobacter was not detected in the pits treated with thymol, in contrast to 63% of the samples being positive for the untreated pit. Urea accumulated in the treated pits from Day 3 to 6. Total gas production from serum bottles was reduced 65 and 76% for thymol amendments of 1.5 and 3.0 g L(-1), respectively, and methane was reduced 78 and 93%, respectively. These results suggest that thymol markedly reduces pathogens, odor, and greenhouse gas emissions from a swine production facility. The urease inhibitor produced a temporary response in conserving urea.  相似文献   

14.
Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.  相似文献   

15.
Management strategy impacts on ammonia volatilization from swine manure   总被引:1,自引:0,他引:1  
Ammonia emitted from manure can have detrimental effects on health, environmental quality, and fertilizer value. The objective of this study was to measure the potential for reduction in ammonia volatilization from swine (Sus scrofa domestica) manure by temperature control, stirring, addition of nitrogen binder (Mohave yucca, Yucca schidigera Roezl ex Ortgies) or urease inhibitor [N-(n-butyl) thiophosphoric triamide (NBPT)], segregation of urine from feces, and pH modification. Swine manure [total solids (TS) = 7.6-11.2%, total Kjeldahl nitrogen (TKN) = 3.3-6.2 g/L, ammonium nitrogen NH(+)(4)-N = 1.0-3.3 g/L] was stored for 24, 48, 72, or 96 h in 2-L polyvinyl chloride vessels. The manure was analyzed to determine pre- and post-storage concentrations of TS and volatile solids (VS), TKN, and NH(+)(4)-N. The concentration of accumulated ammonia N in the vessel headspace (HSAN), post-storage, was measured using grab sample tubes. Headspace NH(3) concentrations were reduced 99.3% by segregation of urine from feces (P < 0.0001). Stirring and NBPT (152 microL/L) increased HSAN concentration (119 and 140%, respectively). Headspace NH(3) concentration increased by 2.7 mg/m(3) for every 1 degree C increase in temperature over 35 degrees C. Slurry NH(+)(4)-N concentrations were reduced by segregation (78.3%) and acidification to pH 5.3 (9.4%), and increased with stirring (4.8%) and increasing temperature (0.06 g/L per 1 degree C increase in temperature over 35 degrees C). Temperature control, urine-feces segregation, and acidification of swine manure are strategies with potential to reduce or slow NH(+)(4)-N formation and NH(3) volatilization.  相似文献   

16.
Intensive livestock operations can release odorous gases from stored or land-applied manure. We measured concentrations of dust and 14 odor-causing gases at increasing distances from four feedlots near Lethbridge, southern Alberta, Canada. Concentration was determined from the amount of total dust or gas accumulated in the sampIers, and the volume of air sampled. Adjacent the feedlots, the maximum concentration of many volatile fatty acids exceeded reported odor detection thresholds; the maximum ammonia concentration was close to the threshold. Ammonia and butyric acid approached or exceeded their individual odor thresholds as far as 200 m downwind of the feedlots. Highest concentrations were measured adjacent to land where manure was being applied. None of the odorant concentrations exceeded their irritation threshold. There was a positive relationship between ammonia concentration and odor intensity as well as dry deposition. Much of the emitted ammonia was deposited to soil immediately downwind, enough to supply all the nitrogen needed for crop growth. Odorant concentrations declined sharply with distance, though measurable odor occasionally persisted to 1 km from the feedlot, beyond the minimum separation guidelines (Alberta) for a single residential dwelling. The weekly averaged total suspended particulates (> 5 microm) were below the Alberta guideline criterion except for one period. Differences among feedlots in odorant plume concentrations were partly related to the stocking density of feedlots, which presumably affects manure moisture and amount of volatiles within the pens.  相似文献   

17.
Characterization of total volatile organic compound emissions from paints   总被引:1,自引:0,他引:1  
Recently, Homeswest in Western Australia and Murdoch University developed a project to construct low allergen houses (LAH) in a newly developed suburb. All potential volatile organic compound (VOC) emission materials used in LAH are required to be measured before the construction of LAH, to ensure they are low VOCs emission materials. To protect people sensitive to exposure to VOCs it is important to evaluate and select low VOCs emitting paints. In this paper, therefore, twelve different paints provided by local manufacturers were selected for analysis to characterize total volatile organic compounds (TVOC) emissions. Emissions of TVOCs from six organic solvent-soluble paints and six water-soluble paints were evaluated using a small test chamber under controlled temperature, relative humidity and air exchange rates. The major volatile organic compounds in these paints were also identified. The time dependence of TVOC emissions from paint products in the chamber was evaluated. TVOC emissions from organic solvent-soluble and water-soluble paints were compared. The influence of air exchange rate on the TVOC concentrations emitted from organic solvent-soluble and water-soluble paints was also investigated. A double-exponential equation was used to evaluate emission characteristics of TVOC from paint products. With this double-exponential model, the physical processes of TVOC emissions can be explained. A variety of emission parameters can be calculated and used to estimate real indoor TVOCs concentrations.  相似文献   

18.
Odors from livestock operations are a complex mixture of volatile carbon, sulfur, and nitrogen compounds. Currently, detailed volatiles analysis is both time consuming and requires specialized equipment and methods. This work describes a new method that utilizes a dynamic flux chamber, solid-phase microextraction (SPME), and gas chromatography-mass spectroscopy (GC-MS) to describe and compare the odorous compounds emitted from cattle and swine feces. Evaluation of method parameters produced a protocol for comparing relative emissions based on fixed sample temperature (20 degrees C) and exposed surface area (approximately 523 cm(2)), air flow rates (1 L min(-1) or 16 cm s(-1)), SPME exposure time (5 min), and chamber cleaning procedures (70% ethanol rinse and drying for 30 min at 105 degrees C) to minimize cross-contamination between samples. A variety of volatile organic compounds (VOCs) including alcohols, volatile fatty acids, aromatic ring compounds, ketones, esters, and sulfides were routinely detected and the relative emissions from fresh and incubated (37 degrees C overnight) swine and cattle feces were compared as a measure of potential to produce odorants during manure storage. Differences in the types and relative quantities of volatiles emitted were detected when animal species (cattle or swine), diet, fecal incubation, or sample storage conditions (20, 4, or -20 degrees C) were varied.  相似文献   

19.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

20.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号