首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
参照JJF1059-1999<测量不确定度评定与表示>的技术规范,通过对原子吸收分光光度法测定水质Zn标准样品过程的分析,阐明了Zn测量不确定度的评定步骤和评定方法,归纳提出了影响水样中Zn测量不确定度的主要因素和不确定度分量的主要来源,并给出了相对标准不确定度分量,得出了该Zn标准样品测量不确定度的评定结果:扩展不确定度为U=0.012mg/L,或相对不确定度为3.5%.结论:评定程序和方法符合技术规范要求,操作简便、结果可靠,有较高的应用价值.  相似文献   

2.
根据检测步骤和测量模型,以及测量不确定度评定与表示方法,分析了石墨炉原子吸收法测定环境空气PM10中铅不确定度的主要来源,量化了采气体积、切割粒径、标准溶液浓度与校准曲线拟合、量器容积误差、测量重复性等不确定度分量.考察得出采样流量是不确定度主要因素.用合成标准不确定度和扩展不确定度对测量结果进行表述.研究内容为该方法测量不确定度的评定提供参考.  相似文献   

3.
孙松 《云南环境科学》2005,24(Z2):179-182
采用分光光度法测定水样中的总氰化物浓度,评定其测量不确定度.按照测量不确定度的传播规律建立总氰化物浓度的测量不确定度数学模型,通过对整个测定过程中所产生的各不确定度分量的分析和计算,求出合成标准不确定度和扩展不确定度.  相似文献   

4.
吴伟文 《环境》2006,(Z1):40-41
对GB/T11893-1989<水质总磷的测定分光光度法>中分光光度法测定水中总磷浓度的测量不确定度进行评定.根据JJF1059-1999<测量不确定度评定与表示>技术规范的要求,分析了该测量过程的测量不确定度来源,建立了数学模型,对测量不确定度的各个分量进行计算,最后合成求出总磷浓度的标准不确定度和扩展不确定度.  相似文献   

5.
赵红叶 《环境科学与管理》2007,32(7):147-148,151
根据火焰原子吸收分光光度法测定水中的铜含量,分析主要的测量不确定度来源,即标准曲线不确定度、标准溶液不确定度、测量重复性不确定度.计算得到水中铜的测定结果的合成不确定度为0.098mg/L,扩展不确定度为0.196mg/L.  相似文献   

6.
由于测量不确定度便于使用、易于掌握,已被普遍认可作为表征测量结果质量的表达方式。运用红外分光测油仪测量标准样品石油类含量,对所有不确定度分量进行了量化,并找出测量不确定度的来源,从而计算其测量合成相对标准不确定度和扩展不确定度。结果表明:标准样品中石油类的测量结果为20.03 mg/L,扩展不确定度为0.42 mg/L(k=2);扩展不确定度贡献较大的主要分量有:加标回收率、样品重复测定和稀释过程引入的标准不确定度分量。  相似文献   

7.
介绍了原子荧光光谱仪测定底泥中砷含量的不确定度评定方法,分析和识别测量过程中不确定度的来源,较为全面地评定了测量不确定度。根据最小二乘法拟合计算工作曲线的标准不确定度,采用极差法评定测量次数较少时引起的标准不确定度。  相似文献   

8.
乙酸铵交换法测定土壤阳离子交换量的不确定度评定研究   总被引:1,自引:0,他引:1  
采用乙酸铵交换法测定土壤阳离子交换量,并分析了测量过程中不确定度的来源:样品和标准物质的称量,容量瓶、移液管和滴定管的体积,以及测量的重复性等.在此基础上对各不确定度分量进行评定,并计算得到合成不确定度和扩展不确定度.最后提出了在测定过程中减小不确定度的有效途径,认为乙酸铵交换法测定土壤阳离子交换量的结果不确定度主要来源于重复性测定,增加测量次数可以减小重复性的不确定度,从而降低测定不确定度.当土壤中阳离子交换量为22.5 cmol(+)/kg时,扩展不确定度为1.0 cmol(+)/kg,置信水平为95%.  相似文献   

9.
根据石墨炉原子吸收分光光度法(GFAAS)测定土壤中铍的过程,建立相应的数学模型并对模型中各个参数进行了不确定度来源分析.依据测量不确定度的评定理论,对样品称量、定容体积、标准溶液的配制、曲线拟合、仪器测量重复性、干物质含量等影响不确定度的分量进行计算,给出了合成标准不确定度和扩展不确定度,结果表明,测定结果的不确定性主要来源于标准拟合引入的不确定度,其次为仪器重复测定引入的不确定度,该评定方法为石墨炉原子吸收分光光度法测定土壤中重金属元素的不确定度评定提供参考依据.  相似文献   

10.
采用紫外荧光法测定氮气中的二氧化硫气体浓度的测量不确定度.充分考虑重复测量的重现性、测量仪器的计量性能局限性、标定仪器所用的标准气体等因素对测量的影响,计算氮气中的二氧化硫气体浓度测量合成标准不确定度为0.4.  相似文献   

11.
火焰原子吸收法测定水中铜的不确定度评定   总被引:1,自引:0,他引:1  
详细叙述了火焰原子吸收法测定水中铜含量的操作步骤及标准曲线绘制的操作步骤,根据操作步骤建立火焰原子吸收法测定水中铜含量不确定度的数学模型,分别对配制标准使用液、取样过程、样品重复性测定、绘制标准曲线引入的不确定度分量进行了详细的分析和计算,得出扩展不确定度。通过不确定度的计算分析得出绘制标准曲线引入的不确定度分量和样品测量重复性引入的不确定度分量对测量结果产生主要影响,因此,提高方法的灵敏度和准确度的关键步骤是提高操作技能,增加标准曲线测量次数和被测样品测量次数。  相似文献   

12.
依据JJF1059.1-2012,确立测量结果和不确定度评价的数学模型,从采集气样体积和采气后滤膜消解液待测物浓度和定容体积三个部分,A类不确定度和B类不确定度二个方面评定测量过程的不确定度,量化各不确定度分量。本次测量相对合成标准不确定度为0.024,较大的不确定度是样品浓度测量过程中的A类不确定度,主要由标准曲线测量和样品测量随机偏差引入,分量值分别为0.013和0.011。本次测量结果为0.169±0.008mg/m3(包含区间在0.161~0.177mg/m3),k=2。即在包含概率约为95%的条件下,可以判定该工作场所空气中硒化氢的含量已经超过了PC-TWA标准限值。  相似文献   

13.
本文根据中华人民共和国国家环境保护标准总有机碳检验方法 (HJ501-2009)进行地表水中总有机碳(TOC)的测定。用MultiN/C2100测定仪测定水样中的总有机碳,并且分析了主要的测量不确定度来源,即所使用的玻璃器具产生的不确定度、标准曲线的不确定度、测量重复性不确定度和仪器产生的不确定度,分别量化后加以合成即得TOC的测量不确定度。  相似文献   

14.
参照JJF1059-1999《测量不确定度评定与表示》的技术规范,通过对原子吸收分光光度法测定水质Zn标准样品过程的分析.阐明了Zn测量不确定度的评定步骤和评定方法,归纳提出了影响水样中Zn测量不确定度的主要因素和不确定度分量的主要来源,并给出了相对标准不确定度分量,得出了该Zn标准样品测量不确定度的评定结果:扩展不确定度为U=0.012mg/L,或相对不确定度为3.5%。结论:评定程序和方法符合技术规范要求,操作简便、结果可靠,有较高的应用价值。  相似文献   

15.
根据测量原理建立数学模型,分析各种不确定分量的来源,评定标准不确定度,确定合成不确定度和扩展不确定度.通过不确定影响分量的分析,找出最大不确定分量,重点控制其分量,可保证测量的准确性和精度,也可通过重新评估显著性不确定分量,找出方法存在的不足和问题,提出控制不确定分量的步骤和方法,改善测量方法和手段提高测量准确性和精度.  相似文献   

16.
对企业水平衡测试的不确定度,根据标准详细分析了测量各种水量的不确定度分量的来源,计算评定出合成标准不确定度的范围,提出了减小不确定度的方法。  相似文献   

17.
水中硝酸盐氮含量测量不确定度的评定   总被引:1,自引:0,他引:1  
采用酚二磺酸分光光度法对水中硝酸盐氮进行不确定度评定.充分考虑到测定过程中测量重复性、标准溶液的配制、标准曲线的制备等各种因素对测量的影响,测得硝酸盐氮的相对合成标准不确定度为8.75×10-3.  相似文献   

18.
测量不确定度(uncertainty of measurement)是表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。不确定度一词指可疑程度,广义而言,测量不确定度是对测量结果正确性的可疑程度。如何对测量结果的不确定度进行合理评定,一直是困扰检测实验室的一个难题。依据HJ505—2009标准的方法,测定了水样的生化需氧量BOD5,估算了测试过程中的随机效应和系统效应所产生的不确定度分量,最终评定了生化需氧量浓度的测量不确定度。  相似文献   

19.
通过对烟气排放连续监测系统的子系统颗粒物监测系统测量烟气颗粒物浓度的不确定度进行评定,分析了测量过程中引入的不确定度来源,求出各不确定度的分量,最后合成标准不确定度并计算相对扩散不确定度。结果表明:测量重复性对颗粒物浓度的不确定度贡献最大,零点漂移和跨度漂移次之,而仪器本身的精度和误差带来的不确定度相对较小。经计算,该监测系统的扩展不确定度为0. 70mg/m3,相对扩展不确定度为6. 3%,结合质量控制图可见该颗粒物监测系统的不确定度小,说明其监测数据的分散性小,数据质量高,可信度大。  相似文献   

20.
根据JJF 1135-2005 《化学分析测量不确定度评估》的要求,分析火焰原子吸收分光光度法测定废水中铜浓度的各操作环节中不确定度来源,对其中可定量化的不确定度分量进行评估.评估结果表示标准工作曲线拟合过程是不确定度的主要来源,所以严格控制好标准曲线的校准过程,是本实验的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号