首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
尾矿中硫化矿物氧化产生的酸性矿山废水(AMD),因pH低和富含重金属离子而对周边生态环境造成巨大危害。黄铁矿作为尾矿中分布最广、含量最高的常见硫化矿物之一,其氧化是酸性矿山废水产生的一个重要因素。因此如何有效的从源头控制黄铁矿的氧化是治理AMD的根本途径。实验以黄铁矿为研究对象,合成了一种新型的钝化剂——二硫代胺基甲酸钠(DTC-TETA),并将该钝化剂与芦苇秸秆结合,分别考察了钝化剂和钝化剂-秸秆混合物抑制黄铁矿在酸性溶液中氧化的效果。结果显示:氧化24 h后,单纯的秸秆粉末覆盖对黄铁矿氧化抑制效果并不理想;0.5%(V/V)DTC-TETA对黄铁矿氧化抑制率为59.5%,0.5%(V/V)DTC-TET和秸秆混合物可以使黄铁矿氧化抑制率增加至76.9%。可见在减少钝化剂浓度的情况下,合理的添加秸秆物质,不仅能有效的抑制黄铁矿的氧化,而且从源头上减少了化学物质的使用量,同时还充分利用了农业废弃物,从而降低钝化成本和可能的环境风险。  相似文献   

2.
李杰  朱琳  李睿华 《环境工程学报》2013,7(7):2424-2428
从广东云浮矿山酸性废水中富集获得氧化亚铁硫杆菌(Thiobacillus ferrooxidans),利用该氧化亚铁硫杆菌研究了反应时间、pH、温度、矿浆浓度和矿物粒度对磁黄铁矿生物氧化获得铁离子的影响。结果表明,在29℃,摇床转速200 r/min,10%接种量条件下,氧化亚铁硫杆菌可以明显促进磁黄铁矿的氧化,但反应后期有黄钾铁矾沉淀生成,不利于获得铁离子;控制溶液pH值为2.00,温度在29~36℃范围,可促进生物氧化磁黄铁矿获得铁离子;铁离子量随着矿浆浓度的增大和矿物粒度的减小而增加,优化的矿浆浓度和矿物粒径分别为6%和58μm左右。  相似文献   

3.
为揭示富里酸和Ca2+共存对嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)氧化酸性矿山废水(AMD)中的Fe2+和形成次生高铁矿物的影响,分析了pH、Fe2+氧化率、铁沉淀率以及次生高铁矿物矿相、基团等相关指标。结果表明,Ca2+确实具有提高嗜酸性氧化亚铁硫杆菌氧化Fe2+的能力。低质量浓度(0.2 g/L)的富里酸对嗜酸性氧化亚铁硫杆菌活性的提高具有促进作用,高质量浓度(0.4 g/L)的富里酸具有抑制作用,而增加Ca2+反过来能够减弱高浓度富里酸对嗜酸性氧化亚铁硫杆菌的抑制作用。对形成的次生高铁矿物进行X射线衍射(XRD)和傅立叶红外光谱(FTIR)分析,结果表明高浓度富里酸促进了另一次生高铁矿物草黄铁矾的生成。  相似文献   

4.
以城市生活垃圾焚烧飞灰和矿山酸性废水无害化处理为研究对象,设计了一条城市生活垃圾焚烧飞灰与矿山酸性废水共处置技术路线,利用焚烧飞灰和矿山酸性废水的酸碱性,加入重金属稳定化药剂,经处理可实现矿山酸性废水和垃圾焚烧飞灰中重金属的有效去除和稳定。矿山酸性废水的p H由2.33升至中性,废水中重金属Cu、Pb、Zn、Cd、Mn、Fe和As等浓度均有下降,可满足国家《污水综合排放标准》(GB 8978-1996)相关标准;垃圾焚烧飞灰中重金属Pb、Zn和Cd浸出浓度分别降低了92.1%、73.4%和95.2%,满足危险废物鉴别标准(GB 5085.3-2007)。  相似文献   

5.
为了比较黄铁矿、钛铁矿、磁铁矿、钒钛磁铁矿、零价铁以及亚铁催化双氧水氧化处理T酸废母液的效能,研究了不同体系的催化氧化反应动力学以及pH值变化情况,考察了H2O2投加量、催化剂投加量及循环利用次数的影响.研究结果表明,黄铁矿、钛铁矿催化活性较亚铁离子更好,且受废水pH值变化影响小,T酸废母液TOC去除率高达75%左右,是十分有效的类Fenton反应催化剂.钛铁矿催化活性较黄铁矿好,重复利用5次,TOC去除率依然保持在72%以上,表明钛铁矿有着很好的重复利用性.  相似文献   

6.
Fenton氧化/高浓度泥浆法处理矿山废水   总被引:2,自引:0,他引:2  
为了解决某大型铜矿废水COD不达标问题,采用Fenton氧化对原有高浓度泥浆(HDS)工艺进行改进。探讨了Fenton氧化矿山废水各指标的去除效果以及H2O2浓度对出水COD去除效果的影响,结果表明,Fenton氧化-电石乳中和絮凝沉淀工艺处理矿山废水是可行的,最优实验条件为:pH稳定在3.0~4.5,H2O2投加量0.5 mL/L,电石乳投加量8.5 g/L,PAM投加量1.5 mg/L;系统对废水COD的去除机理是加入的H2O2和矿山酸性废水中的Fe2+离子在低pH下形成Fenton试剂;系统对TFe、Zn2+、Cu2+ 的去除效果比Mn2+的去除效果更稳定。  相似文献   

7.
光催化-Fenton试剂处理印钞废水   总被引:1,自引:0,他引:1  
以300w高压汞灯为光源,TiO2为催化剂,对光催化剂用量、酸碱性、H2O2用量以及结合Fenton试剂等因素,对印钞废水光催化氧化降解进行研究.结果表明,酸性条件下,辅以Fenton试剂,对光催化氧化处理印钞废水有较好的效果;并进行了机理探讨.  相似文献   

8.
通过对废水pH值、H2O2用量、催化剂用量、反应时间、反应温度等工艺条件的考察,确定了H2O2催化氧化处理酸性大红染料废水的最佳工艺条件pH 4、H2O2用量6 mL/L、催化剂用量3 g/L、反应时间100 min、反应温度70℃.在该条件下,COD和色度的去除率分别为76.7%和99.4%;通过反应前后的紫外-可见光光谱分析表明,H2O2催化氧化处理酸性大红GR染料废水有比较好的效果,为该工艺处理酸性大红GR染料废水提供了科学依据.  相似文献   

9.
黄沙坪铅锌矿以下简称“坪矿”为中型有色金属矿山,主要生产铅、锌和硫精矿。在矿体中伴生有铀矿,并含有少许黄酮矿和黄铁矿在黄铁矿和微生物的作用下,其废水中不仅溶入了重金属离子,而且铀和镭也部分地溶入矿水中,使坪矿井下废水成为含铀和镭以及重金属离子的有害废水,污染环境,毒化水体,危害人民。  相似文献   

10.
刘红  余薇  刘娟  徐文婷 《环境工程学报》2008,2(8):1040-1043
用氧化-絮凝耦合法处理酸性大红GR废水,以高锰酸钾为氧化剂、聚硅硫酸铁为絮凝剂,脱色率达到94.9%,COD去除率达到55.2%.通过用倒置式生物显微镜观察絮体,对反应机理进行推测.对高锰酸钾与酸性大红之间氧化还原反应产物和氧化-絮凝耦合处理的絮体进行紫外和红外吸收光谱扫描分析,探讨了氧化-絮凝耦合的反应历程和机理:酸性大红被高锰酸钾氧化成小分子有机物而脱色,还原产物新生态水合二氧化锰胶体吸附小分子有机物,并被聚硅硫酸铁卷裹成紧密絮体,氧化与絮凝之间产生协同作用,从而有效去除了色度和COD.  相似文献   

11.
Acid mine drainage (AMD) results from the oxidation of sulfides, mainly pyrite, present in mine wastes, either mill tailings or waste rock. This is the second of two papers describing the coupled physical processes taking place in waste rock piles undergoing AMD production. Since the oxidation of pyrite involves the consumption of oxygen and the production of heat, the oxidation process initiates coupled processes of gas transfer by diffusion and convection as well as heat transfer. These processes influence the supply of oxygen that is required to sustain the oxidation process. This second paper describes a numerical simulator used to represent the interaction of these coupled transfer processes. Numerical simulations are applied to two large sites with extensive characterization programs and widely different properties and behavior that were described in the first paper. The South Dump of the Doyon mine in Canada is permeable and has a high pyrite oxidation rate, thus making temperature-driven air convection the main oxygen supply mechanism. The Nordhalde of the Ronnenberg mining district in Germany contains lower permeability material which is less reactive, thus leading to a more balanced contribution of gaseous diffusion and convection as oxygen supply mechanisms. Overall, simulations allow a coherent representation of the conditions monitored within the waste rock piles and the confirmation of their physical properties. Conceptual simulations are also carried out to illustrate the potential effect of border membranes and layered co-mingling as mitigation methods used to control AMD production in either active or future waste rock piles.  相似文献   

12.
Acid mine drainage (AMD) results from the oxidation of sulfides, mainly pyrite, present in mine wastes, either mill tailings or waste rock. This is the first of two papers describing the coupled physical processes taking place in waste rock piles undergoing AMD production. Since the oxidation of pyrite involves the consumption of oxygen and the production of heat, the oxidation process initiates coupled processes of gas transfer by diffusion and convection as well as heat transfer. These processes influence the supply of oxygen that is required to sustain the oxidation process. This first paper describes a general conceptual model of the interaction of these coupled transfer processes. This general conceptual model is illustrated by the physicochemical conditions observed at two large sites where extensive characterization programs revealed widely different properties. The South Dump of the Doyon mine in Canada is permeable and has a high pyrite oxidation rate leading to high temperatures (over 65 degrees C), thus making temperature-driven air convection the main oxygen supply mechanism. The Nordhalde of the Ronnenberg mining district in Germany contains lower permeability material which is less reactive, thus leading to a more balanced contribution of gaseous diffusion and convection as oxygen supply mechanisms. The field characterization and monitoring data at these sites were thoroughly analyzed to yield two coherent sets of representative physical properties. These properties are used in the second paper as a basis for applications of numerical simulation in AMD-producing waste rock piles.  相似文献   

13.
The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning, in particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterised by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.  相似文献   

14.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

15.
As a result of mining activities the exposure of metal sulphides to oxidation takes place with consequent release of acid mine drainage (AMD). Biomonitoring instruments have been proven to have the best deterrent effect upon polluters. A new approach in online biomonitoring, with the Multispecies Freshwater Biomonitortrade mark (MFB), was developed combining behavioural and feeding responses of the Portuguese indigenous benthic shredder, Echinogammarus meridionalis (Pinkster, 1973) (Crustacea, Amphipoda). These endpoints, along with mortality, were measured and analyzed for a gradient of sublethal doses of AMD. Original river water was used as the control and three doses of treatments were attained by adding increasing volumes of AMD to the control. The increase in AMD concentration and concomitant decrease in pH and increase in the concentration of most metals was followed by an overall increase of the mortality, decrease of locomotion/feeding activity and inhibition of the feeding rate. Mortality was observed in the two highest concentrations of AMD. Significant decrease in average locomotion/feeding activity took place in the second treatment. Although an inhibition of feeding was observed along the gradient of AMD concentration only in the highest concentration the feeding rate was significantly reduced.  相似文献   

16.
The stringent regulations for discharging acid mine drainage (AMD) has led to increased attention on traditional or emerging treatment technologies to establish efficient and sustainable management for mine effluents. To assess new technologies, laboratory investigations on AMD treatment are necessary requiring a consistent supply of AMD with a stable composition, thus limiting environmental variability and uncertainty during controlled experiments. Additionally, biotreatment systems using live cells, particularly micro-algae, require appropriate nutrient availability. Synthetic AMD (Syn-AMD) meets these requirements. However, to date, most of the reported Syn-AMDs are composed of only a few selected heavy metals without considering the complexity of actual AMD. In this study, AMD was synthesised based on the typical AMD characteristics from a copper mine where biotreatment is being considered using indigenous AMD algal-microbes. Major cations (Ca, Na, Cu, Zn, Mg, Mn and Ni), trace metals (Al, Fe, Ag, Na, Co, Mo, Pb and Cr), essential nutrients (N, P and C) and high SO4 were incorporated into the Syn-AMD. This paper presents the preparation of chemically complex Syn-AMD and the challenges associated with combining metal salts of varying solubility that is not restricted to one particular mine site. The general approach reported and the particular reagents used can produce alternative Syn-AMD with varying compositions. The successful growth of indigenous AMD algal-microbes in the Syn-AMD demonstrated its applicability as appropriate generic media for cultivation and maintenance of mining microorganisms for future biotreatment studies.  相似文献   

17.
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.  相似文献   

18.
Numerical simulations of layered, sulphide-bearing unsaturated waste rock piles are presented to illustrate the effect of coupled processes on the generation of acid mine drainage (AMD). The conceptual 2D systems were simulated using the HYDRUS model for flow and the POLYMIN model for reactive transport. The simulations generated low-pH AMD which was buffered by sequential mineral dissolution and precipitation. Sulphide oxidation rates throughout the pile varied by about two orders of magnitude (0.004-0.4 kg m-3 year-1) due to small changes in moisture content and grain size. In the fine-grained layers, the high reactive surface area induced high oxidation rates, even though capillary forces kept the local moisture content relatively high. In waste rock piles with horizontal layers, most of the acidity discharged through vertical preferential flow channels while with inclined fine grained layers, capillary diversion channeled the AMD to the outer slope boundary, keeping the pile interior relatively dry. The simulation approach will be useful for helping evaluate design strategies for controlling AMD from waste rock.  相似文献   

19.
In this paper heavy metal pollution at an abandoned Italian pyrite mine has been investigated by comparing total concentrations and speciation of heavy metals (Fe, Cu, Mn, Zn, Pb and As) in a red mud sample and a river sediment. Acid digestions show that all the investigated heavy metals present larger concentrations in the sediment than in the tailing. A modified Tessier's procedure has been used to discriminate heavy metal bound to organic fraction from those originally present in the mineral sulphide matrix and to detect a possible trend of metal mobilisation from red mud to river sediment. Sequential extractions on bulk and size fractionated samples denote that sediment samples present larger percent concentrations of the investigated heavy metals in the first extractive steps (I-IV) especially in lower dimension size fractionated samples suggesting that heavy metals in the sediment are significantly bound by superficial adsorption mechanisms.  相似文献   

20.
Background, aim and scope

In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues.

Study site

The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km2. About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite.

Methods

The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis.

Results and discussion

The inputs of acid mine waters drastically increased filtered heavy metal concentrations in the Certej River, e.g. Zn up to 130 mg L−1, Fe 100 mg L−1, Cu 2.9 mg L−1, Cd 1.4 mgL−1 as well as those of SO4 up to 2.2 g L−1. In addition, river water became acidic with pH values of pH 3. Concentrations of pollutant decreased slightly downstream due to dilution by waters from tributaries. Metal concentrations measured at headwater stations reflect background values. They fell in the range of the environmental quality standards proposed in the EU Water Framework Directive for dissolved heavy metals. The outflow of the large tailing impoundment and the groundwater downstream from two tailings dams exhibited the first sign of AMD, but they still had alkalinity.

Most dug wells analysed delivered a drinking water that exhibited no sign of AMD pollution, although these wells were a distance of 7 to 25 m from the contaminated river. It seems that the Certej River does not infiltrate significantly into the groundwater.

Pyrite was identified as the main sulphide mineral in the tailings dam that produces acidity and with calcite representing the AMD-neutralising mineral. The acid–base accounting proved that the potential acid-neutralising capacity in the solid phases would not be sufficient to prevent the production of acidic water in the future. Therefore, the open pits and mine waste deposits have to be seen as the sources for AMD at the present time, with a high long-term potential to produce even more AMD in the future.

The socioeconomic study showed that mining provided the major source of income. Over 45% of the households were partly or completely reliant on financial compensations as a result of mine closure. Unemployment was considered by the majority of the interviewed persons as the main cause of social problems in the area. The estimation of the explanatory factors by the logistic regression analysis revealed that education, household income, pollution conditions during the last years and familiarity with environmental problems were the main predictors influencing peoples’ opinion concerning whether the main river is strongly polluted. This model enabled one to predict correctly 77% of the observations reported. For the drinking water quality model, three predictors were relevant and they explained 66% of the observations.

Conclusions

Coupling the findings from the natural science and socioeconomic approaches, we may conclude that the impact of mining on the Certej River water is high, while drinking water in wells is not significantly affected. The perceptions of the respondents to pollution were to a large extent consistent with the measured results.

Recommendations and perspectives

The results of the study can be used by various stakeholders, mainly the mining company and local municipalities, in order to integrate them in their post-mining measures, thereby making them aware of the potential long-term impact of mining on the environment and on human health as well as on the local economy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号