首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In response to insect herbivory, plants emit volatiles that are used by the herbivores’ natural enemies to locate their host or prey. Herbivore attack also enhances tea aroma. Herbivore-induced plant volatiles (HIPVs) vary both quantitatively and qualitatively with infestation duration and herbivore density. Thus, whether HIPVs can reliably communicate the identities of herbivores is of interest. Here, we studied the tea plant volatiles induced by the tea leafhopper (Empoasca vitis, a piercing–sucking insect), the tea geometrid (Ectropis oblique, a chewing insect), and methyl jasmonate (MeJA, a plant hormone). Geometrid feeding induced more complex volatile blends than did leafhopper infestation. The volatiles induced by both herbivores significantly increased in quality and quantity with time during the first 16 h of infestation, after which the profiles of induced volatile blends and the emission of induced compounds varied diurnally. (E)-β-Ocimene displayed a unique rhythm in which emission peaked at night. The amount of HIPVs significantly increased, while their profiles changed little, with herbivore density. Overall, the leafhoppers and geometrids induced significantly different volatiles from tea plants, while the HIPV profiles varied with a circadian rhythm and were similar at different herbivore densities. Our findings also suggest a new method of enhancing tea flavor using exogenously applied plant hormones, because the volatiles induced by leafhoppers and MeJA were similar in general composition.  相似文献   

2.
Parasitic wasps orient to green leaf volatiles   总被引:12,自引:0,他引:12  
Summary Undamaged plants emit low levels of green leaf volatiles (GLVs), while caterpillar-damaged and artificially damaged plants emit relatively higher levels of certain GLVs. Female braconid parasitoids,Microplitis croceipes, oriented to both damaged plants and to individual GLVs in no-choice tests in a wind tunnel, but seldom oriented to undamaged plants. Female ichneumonid parasitoids,Netelia heroica, also oriented to individual GLVs in a wind tunnel. Males of both wasp species failed to orient to the GLVs. These data show that leaf-feeding caterpillars can cause the release of GLVs, and that parasitic wasps can respond to these odors by flying upwind (chemoanemotactic response), which brings the wasps to their caterpillar hosts. This supports the hypothesis that plants communicate with members of the third trophic level,i.e., plants under herbivore attack emit chemical signals that guide natural enemies of herbivores to sites of plant damage. In this interaction, the GLVs serve as tritrophic plant-to-parasitoid synomones. That parasitoids from two different wasp families oriented to GLVs suggests that the response may be widespread among the Hymenoptera.Mention of a commercial or proprietary product does not constitute an endorsement by the U.S. Department of Agriculture  相似文献   

3.
Volatile organic chemicals (VOCs) are used by female moths to find host plants for oviposition and specialist moths can be highly tuned to the volatile signature of their host plant. The ash leaf-coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae) specializes on ash (Fraxinus spp.) (Oleaceae). Its introduction to urban forests in the Canadian Prairie Provinces on both green, F. pennsylvanica, and black ash, F. nigra, offers the opportunity to test odor-mediated host location to two host-plant species. In laboratory and field experiments, C. fraxinella adults oriented to volatiles released from ash seedlings. The antennae of mated female C. fraxinella consistently detected five VOCs released from black and green ash, four of which were common to both species. Blends of natural and synthetic VOCs found to elicit an antennal response were tested in wind tunnel and field bioassays. Synthetic and natural VOCs elicited as much oriented flight from mated female C. fraxinella as ash seedlings, but did not elicit contact with the VOC lure in the wind tunnel. In the field, traps baited with blends of synthetic copies of black and green ash VOCs did not attract more female C. fraxinella than unbaited control traps. These experiments lay the foundation for further research to develop semiochemical lures to attract female C. fraxinella.  相似文献   

4.
Summary. Feeding by Pieris brassicae or P. rapae caterpillars on Brussels sprouts plants induces the emission of synomones that attract natural enemies of the caterpillars, Cotesia glomerata, a generalist parasitoid, and C. rubecula, a specialist on P. rapae. Previous research on this tritrophic system has identified a large number of volatiles in the headspace of herbivore-damaged Brussels sprouts plants, and this paper addresses the question which of these volatiles are perceived by the two parasitoid species. Headspace odors from both P. brassicae- and P. rapae-damaged Brussels sprouts plants were analyzed by coupled gas chromatography electro- antennogram (GC-EAG) detection. Twenty volatiles evoked consistent EAG reactions in the antennae of both species and nineteen of these volatiles could be identified with GC-MS. One component that could not be identified due to its low concentration, evoked EAG responses in antennae of C. rubecula only. Possible consequences for searching behavior of the two parasitoid species are discussed.  相似文献   

5.
Insect pollination and pollen feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured plant VOC emission over 72 h from two types of 24 h M. aeneus exposure to B. napus: pollen feeding vs. flower bud injury and oviposition. The most abundant constitutive volatile organic compounds (VOCs), lilac aldehydes A (LA A) & B (LA B) and veratrole (VER), had 30–40 % reductions from M. aeneus pollen-feeding exposure at 24 h and 50–90 % reductions by 72 h, with greater reductions after bud injury and oviposition. Linalool (LIN), a common herbivore-induced plant volatile (HIPV), emission did not change at 24 h, but was induced six- to sevenfold 48 h after both exposure treatments. By 72 h, LIN had even greater (tenfold) induction after bud injury and oviposition, but no induction from pollen feeding. Three common HIPVs (β-caryophyllene, = βCAR (E)-β-farnesene = EβFAR, and (Z)-β-ocimene = ZβOCI) were progressively induced up to 2.5-fold 72 h after floral bud injury and oviposition. We assayed M. aeneus adult behavioral responses to LA A and B, and VER. Both M. aeneus sexes were attracted to higher concentrations than single plant constitutive emission for these VOCs, but avoided much higher doses. Progressive LA A and B, and VER, emission reductions might help plants (e.g., B. napus) to avoid future interactions with pollen-feeding pest herbivores (e.g., M. aeneus). After bud injury and oviposition, HIPV induction could help plants deter future oviposition and/or attract natural enemies to deposited eggs.  相似文献   

6.
Summary. The pollen beetle, Meligethes aeneus, is an important pest of oilseed rape, Brassica napus. Larvae of this species feed only in the buds and flowers of Brassicaceae. One important natural enemy of this beetle is the parasitoid Phradis morionellus that attacks larvae in buds and flowers and also feeds on the flowers. The preferences for odours of non-infested and infested rape were tested for both starved and fed parasitoids in Y-tube olfactometer experiments. The volatile blend released from pollen beetle-infested and non-infested flowering rape and from pollen beetle larvae was identified and quantified. Gas chromatography-electroantennodetection analyses were performed with female P. morionellus. Parasitoids in both treatment groups preferred infested rape, but the proportion of responding female P. morionellus was significantly lower for the group that was starved. Six of the 20 volatiles identified were released at higher rates from infested rape than from non-infested. None of these compounds was found in pollen beetle larvae headspace. P. morionellus antennae detected both major and minor components in the volatile blend. The volatiles released at a significantly higher rate from infested rape and detected by P. morionellus antennae were (Z)-3-hexenylacetate, (Z)-3-hexenol, 3-butenyl isothiocyanate and (E,E)-α-farnesene.  相似文献   

7.
Predatory arthropods are attracted to infochemicals emitted by their herbivore prey or by the prey’s host plants. We studied such a tritrophic system measuring the olfactory responses of three potter wasp species (Symmorphus murarius, Symmorphus gracilis, Discoelius zonalis, Hymenoptera: Eumeninae) to salicylaldehyde, sequestered as a defence compound by Chrysomela leaf beetle larvae when feeding on Salicaceae, and volatile organic compounds (VOCs) emitted by aspen (Populus tremula, Salicaceae). In electroantennographic recordings (EAG), the highly specialized S. murarius that almost exclusively feeds on larvae of Salicaceae-feeding Chrysomela species was more sensitive to salicylaldehyde than the less specialized S. gracilis, feeding on such Chrysomela species but also weevil larvae. In contrast the related D. zonalis, foraging for microlepidoptera caterpillars on various host plants, did not respond at all. Furthermore, the three wasp species responded differently to aspen VOCs in GC–MS/EAD measurements. These results indicate that the sense of smell of predatory potter wasps differs for prey and plant volatiles among related wasp species according to their degree of host specialization. The considerable differences in salicylaldehyde perception suggest that its originally defensive function has backfired as it is used by specialist potter wasps for prey location. This is an important clue on adaptive mechanisms of the highest trophic level of the well-studied evolutionary arms race among Chrysomela leaf beetles, their host plants and their enemies.  相似文献   

8.
Summary. Maize plants respond to caterpillar feeding with the release of relatively large amounts of specific volatiles, which are known to serve as cues for parasitoids to locate their host. Little is known about the genetic variability in such herbivore-induced plant signals and about how the emissions in cultivated plants compare to those of their wild relatives. For this reason we compared the total quantity and the qualitative composition of the odour blend among eleven maize cultivars and five wild Zea (Poaceae) species (teosinte), as well as among the offspring of eight Zea mays mexicana plants from a single population. Young plants were induced to release volatiles by mechanically damaging the leaves and applying oral secretions of Spodoptera littoralis (Lepidoptera: Noctuidae) caterpillars to the wounded sites. Volatiles were collected 7 h after treatment and subsequently analysed by gas chromatography. The total amounts of volatiles released were significantly different among maize cultivars as well as among the teosintes. Moreover, striking differences were found in the composition of the induced odour blends. Caryophyllene, for instance, was released by some, but not all varieties and teosintes, and the ratios among monoterpenes and sesquiterpenes varied considerably. The offspring of different mother plants of the Z. m. mexicana population showed some variation in the total amounts that they released, but the composition of the odour blend was very consistent within the population of this teosinte species. We discuss the ecological significance of these findings in terms of specificity and reliability of induced plant signals for parasitoids.  相似文献   

9.
Summary Gregarious nymphs of the desert locust,Schistocerca gregaria (Forsk.) (Orthoptera: Acrididae) were more attracted to volatiles from mechanically damaged food plants used for rearing than to either the undamaged or damaged food plants not used as diet in Y-tube olfactometer assays. Comparative analysis of the volatile emissions from plants used for rearing and food plants not used for rearing,e.g. Sorghum bicolor, Pennisetum clandestinum, Schouwia thebaica, wheat (Triticum sp., var. Nyangumi),Zygophyllum simplex, Heliotropium undulatum andTribulus terrestris was carried out by GC, GC-EAD and GC-MS. Significant quantitative and qualitative differences were found in the volatile emissions and olfactory responses of nymphs in GC-EAD assays. Up to 33 compounds were identified in volatiles of the plants of which 9 evoked EAGs. EAG-active components included common green leaf compounds (E)-2-pentenal, (E)-2-hexenal, 4-methyl-3-pentenal, (E)-3-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-2-hexenyl acetate, (Z)-3-hexen-1-ol and (Z)-2-hexen-1-ol. (Z)-3-Hexenyl butyrate and (Z)-3-hexenyl isovalerate were detected in stimulatory amounts only in the volatiles ofS. thebaica. (E, Z)-2,6-Nonadienal was detected as a component in the volatiles ofT. terrestris and was highly stimulatory. In EAG assays with seven common green leaf volatiles, (Z)-3-hexenyl acetate was most stimulatory while hexanal was the least. No significant differences were recorded between antennal responses of males and females to the tested compounds. These results are discussed with regard to current hypotheses on host plant recognition through detection of their airborne volatiles and the learning behaviour by nymphs ofS. gregaria.  相似文献   

10.
Galerucella placida Baly (Coleoptera: Chrysomelidae) is a potential biocontrol agent of the rice-field weed Polygonum orientale L. (Polygonaceae). The volatile organic compound (VOC) profiles from undamaged and mechanically damaged plants, and from plants 12- and 36-h following continuous feeding of female G. placida adults and 2nd instar larvae were identified and quantified by GC–MS and GC-FID analyses. Twenty-four and 21 compounds were identified in volatiles of undamaged and insect feeding plants, respectively; whereas 22 compounds were detected in volatiles of mechanically damaged plants. Decanal and 1-dodecanol were unique to undamaged plants, and linalool was detected in volatiles of undamaged and mechanically damaged plants, but not in volatiles of insect damaged plants. However, the beetles are not attracted by none of these volatile components, when tested individually in Y-shaped glass tube olfactometer bioassays. In all plants, methyl jasmonate was predominant. 1-Undecanol was the least amount in undamaged plants, and plants 12-h after feeding by G. placida adults and larvae; whereas 1-tridecanol was the least abundant in plants 36-h after feeding by G. placida adults and larvae, and mechanically damaged plants. The beetles showed significant preference to the whole volatile blends from plants 12-h after feeding by larvae and plants 36-h after feeding by either larvae or adults compared to those of undamaged plants. Further, G. placida responded to individual synthetic compounds, 3-hexanol, 1-octen-3-ol, nonanal, and geraniol at 7, 1.38, 3.75 and 4.5 µg/25 µL CH2Cl2, respectively, and provide a basis for attraction of the potential biocontrol agent in the field.  相似文献   

11.
Models of prey choice in depleting patches predict an expanding specialist strategy: Animals should start as specialists on the most profitable prey and then at some point during patch exploitation switch to a generalist foraging strategy. When patch residence time is long, the switch to a generalist diet is predicted to occur earlier than when patch residence time is short. We tested these predictions under laboratory conditions using female parasitoids (Aphidius colemani) exploiting patches of mixed instars aphid hosts (Myzus persicae, L1 and L4). The duration of patch exploitation was manipulated by changing travel time between patches. As predicted, patch residence times increase with travel time between patches. Our results provide empirical support for the expanding specialist prediction: Parasitoid females specialized initially on the more profitable hosts (L4), and as the patch depleted, they switched to a generalist diet by accepting more frequently the less profitable hosts (L1). The point at which they switched from specialist to generalist occurred later when travel times and hence patch residence times were short. By affecting the patch exploitation strategy, travel time also determines the composition of hosts left behind, the “giving up composition.” The change in the relative density of remaining host types alters aphid populations’ age structure.  相似文献   

12.
Most crop pests find a suitable host through chemical cues released from plants, but little is known about the odorscape encountered by host-seeking gravid females under natural, outdoor conditions. In this field study, the volatile organic compound (VOC) composition of maize (Zea mays, L.), a host for the European corn borer (ECB) (Ostrinia nubilalis Hüb.) was characterized during the oviposition flight and compared with a forest odorscape. VOCs from maize fields and the forest atmosphere were collected by solid phase microextraction and characterized by gas chromatography-mass spectrometry. The electroantennographic (EAG) response of female ECB antennae to candidate VOCs was tested. Analyses revealed clear differences between the maize field and the forest odorscapes, mainly composed of ubiquitous VOCs but in specific ratios. The maize field odorscape is more complex than the forest odorscape for maize found 18 VOCs but only eight in the forest. Both biotopes shared seven VOCs—green leaf volatiles (GLV), monoterpènes (MT) and homoterpenes. In addition, we found in the forest a distinctive sesquiterpene (SQT) identified as isoledene. The highest EAG responses were elicited by two GLVs and a MT shared by the two biotopes. SQT elicited weak EAG responses, except β-farnesene, only found in the maize field odorscape. Our results suggest that the two biotopes produce specific chemical signatures that insects may use as host cues. To the best of our knowledge this paper is the first report on the maize odorscapes under field conditions. The putative role of the VOCs in host plant detection and selection is discussed.  相似文献   

13.
Lariophagus distinguendus (Hymenoptera: Pteromalidae) is a generalist solitary ectoparasitoid parasitising immature stages of at least 11 foodstuff beetles from five families, including species developing in seeds of Poaceae and Fabaceae. In this study, we tested the role of visual and olfactory stimuli affecting L. distinguendus host location in the trophic context of Stegobium paniceum (Coleoptera: Anobiidae) infesting chickpeas, Cicer arietinum (Fabales: Fabaceae). When either visual plus olfactory cues or olfactory cues alone were provided, S. paniceum-infested chickpeas were more attractive than uninfested chickpeas to naïve L. distinguendus females. Larval faeces of S. paniceum also evoked strong attraction to female wasps. Uninfested chickpeas covered with host faeces were preferred over uninfested ones without faeces, while infested chickpeas were as attractive as healthy chickpeas plus host faeces. Overall, results demonstrated that L. distinguendus females orient their host-seeking decisions mainly on the basis of faeces-borne olfactory stimuli. Further research is on-going to characterise the volatiles from S. paniceum larval faeces to evaluate their attractiveness towards L. distinguendus females.  相似文献   

14.
竹林挥发物主要成分对疾患动物模型生理代谢指标的影响   总被引:1,自引:0,他引:1  
食诱方法造模制备高脂血症SD大鼠模型,考察了α-蒎烯模拟物-松节油对造模高血脂症SD大鼠血脂代谢指标的影响,以期对竹林释放的挥发性有机化合物(VOCs)的保健、疾疗效果进行科学评价.结果表明,在实验浓度范围内,α-蒎烯模拟物-松节油对高脂血症SD大鼠的体重无显著影响;能降低其血清总胆固醇和甘油三酯并表现出数量依赖关系,...  相似文献   

15.
Summary. In a wind tunnel bioassay the effect of three concentrations of natural extracts of (1) Scots pine wood, Pinus sylvestris, and (2) larval frass on the behavioural response of unmated females and males of the old house borer, Hylotrupes bajulus, was tested and compared to the behavioural effects of the male-produced sex pheromone (3R)-3-hydroxy-2-hexanone. The influence on the behaviour of both sexes was found to be equally significant for the two higher concentrated hexane extracts of wood and larval frass. Therefore several synthetic monoterpenes present in the extracts and ethanol were tested at the two higher concentrations (1:100, 1:1000 vol/vol). Among the higher concentrated monoterpenoid hydrocarbons [(+)-α-pinene, (+)-β-pinene, (+)-limonene], only α-pinene increased the activity, orientation towards scent source and interest towards conspecifics. The tests with higher concentrated ethanol and the oxygenated monoterpenes [(-)-verbenone, (-)-trans-pinocarveol, (+)-terpinen-4-ol, (+)-α-terpineol, (-)-myrtenol] revealed that verbenone is the most effective stimulant for the females, followed by trans-pinocarveol, terpinen-4-ol and α-terpineol. For males, terpinen-4-ol was the only mediator significantly inducing attraction and orientation towards the scent source combined with an interest in conspecifics apparent by fighting or courtship behaviour. Males did not respond to verbenone which is a main compound of larval frass. Myrtenol and ethanol were ineffective in both sexes. In fact behavioural observations suggest that the beetles were repelled by the high dose of myrtenol. Using the ten-fold lower dose of the synthetic monoterpenes (1:1000 vol/vol), all semiochemicals except myrtenol lost activity. Myrtenol, however, induced behavioural responses, like increased activity and orientation towards scent source, only at the low concentration. Based on the results, primary attraction of unmated old house borer is probably mediated by monoterpenes of coniferous wood, while secondary attraction to infested wood would occur in response to volatiles of larval frass. Received 5 May 1999; accepted 30 September 1999  相似文献   

16.
To better understand the attractiveness of host tree, Chinese white pines (Pinus armandi Fr.) to Chinese white pine beetle (Dendroctonus armandi Tsai and Li), the antennal responses of D. armandi to the host volatile, as well as the pure enantiomers and racemates of some monoterpenes, were examined using an electroantennogram (EAG). EAG responses of male and female D. armandi to blended volatiles extracted from the host and some synthetic terpenes (α-phellandrene, (−)-β-pinene, (+)-α-pinene, (−)-α-pinene, (−)-camphene, β-myrcene, (S)-(−)-limonene, (+)-camphene and (R)-(+)-limonene) showed significant variation due to different compound concentrations and sex of the beetles. EAG responses to extracted blended volatiles were significantly greater in females than in males, but the EAG response was not always proportional to the volatile concentration. At lower concentrations, females responded strongly to α-phellandrene and males to (−)-β-pinene, while at higher concentrations, females responded most strongly to α-phellandrene and males to (+)-α-pinene. Females were significantly responsive to (−)-α-pinene, α-phellandrene and (−)-camphene, while males were more responsive to (S)-(−)-limonene, (+)-α-pinene and (R)-(+)-limonene. The EAG responses of the female D. armandi to the volatile oil were significantly higher than that of the males, and the infested pine volatiles could evoke higher EAG response. Most of the test compounds elicited similar responses, which suggested that several of the compounds may be used in combination by D. armandi in habitat and/or host community location at the Qinling forest ecosystem.  相似文献   

17.
Because many secondary metabolites in plants act as defense against herbivores it has been postulated that these compounds have evolved under selective pressure by insect herbivores. One explanation for the within-species variation in metabolite patterns in a particular species is that different populations are under selection by different herbivores. We tested this hypothesis, using Arabidopsis thaliana plants that originated from dune and inland areas. We analyzed Arabidopsis thaliana leaves using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in water-methanol fractions and were due to higher concentrations of sinigrin and fumaric acid in dune plants. Inland plants showed lower levels of glucose. Quantitative analysis of glucosinolates was performed with HPLC. Individual plants and populations demonstrated differences in glucosinolate composition and concentration. In growth chamber experiments, the generalist herbivore, Spodoptera exigua grew significantly better on the inland plants, while the specialist herbivore Plutella xylostella performed equally well on plants of both origins. Aliphatic glucosinolate as well as total glucosinolate concentrations negatively correlated with larval mass of Spodoptera exigua. No significant correlations, however, were found between larval mass of Plutella xylostella and glucosinolates in the leaves. A specialist and a generalist herbivore were responding differently to plant secondary chemistry, as was also found in several other studies. This is an important indication that differences in glucosinolate concentrations among populations may result from differential selection by different guilds of herbivores.  相似文献   

18.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   

19.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   

20.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号