首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inorganic arsenic in Chinese food and its cancer risk   总被引:15,自引:0,他引:15  
Even moderate arsenic exposure may lead to health problems, and thus quantifying inorganic arsenic (iAs) exposure from food for different population groups in China is essential. By analyzing the data from the China National Nutrition and Health Survey (CNNHS) and collecting reported values of iAs in major food groups, we developed a framework of calculating average iAs daily intake for different regions of China. Based on this framework, cancer risks from iAs in food was deterministically and probabilistically quantified. The article presents estimates for health risk due to the ingestion of food products contaminated with arsenic. Both per individual and for total population estimates were obtained. For the total population, daily iAs intake is around 42 μg day(-1), and rice is the largest contributor of total iAs intake accounting for about 60%. Incremental lifetime cancer risk from food iAs intake is 106 per 100,000 for adult individuals and the median population cancer risk is 177 per 100,000 varying between regions. Population in the Southern region has a higher cancer risk than that in the Northern region and the total population. Sensitive analysis indicated that cancer slope factor, ingestion rates of rice, aquatic products and iAs concentration in rice were the most relevant variables in the model, as indicated by their higher contribution to variance of the incremental lifetime cancer risk. We conclude that rice may be the largest contributor of iAs through food route for the Chinese people. The population from the South has greater cancer risk than that from the North and the whole population.  相似文献   

2.
Recent breakthroughs in rice arsenic (As) research demonstrate that As accumulation significantly affects trace nutrients in rice grain. In the present study we analyzed the amino acid (AA) profile of sixteen rice genotypes differing in grain As accumulation, grown at three sites with different soil As concentrations, in ascending order, Chinsurah < Purbosthali < Birnagar. Grain As accumulation negatively correlated with essential amino acids (EAAs) which were more prominent in high As accumulating rice genotypes (HAARGs). Conversely, non-essential amino acids (NEAAs) showed an increase in low As accumulating rice genotypes (LAARGs) but a decrease in HAARGs. EAAs like isoleucine, leucine, valine, phenylalanine, and tyrosine also decreased in most of the genotypes. NEAAs like glutamic acid, glycine, proline, and histidine showed an increase in all LAARGs. Likewise, sulfur containing AAs (methionine and cysteine) increased in LAARGs but decreased in HAARGs. Among NEAAs in HAARGs, only arginine and serine showed some induction in most of the genotypes. At the highest As site (Birnagar) total EAAs and NEAAs show significant reduction in HAARGs compared to LAARGs. The study concluded that As accumulation in rice grain alters EAAs and NEAAs differentially, and reduction was more pronounced in HAARGs than in LAARGs. Thus, As tainted rice limits required levels of AAs in rice based diets and therefore cannot alone fulfill the recommended daily intake (RDI) of AAs.  相似文献   

3.
A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L.) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P<0.001) with soil arsenic. Median arsenic concentrations varied by 14, 10 and 3 fold for soil, shoot and grain respectively comparing the two regions. The reason for the sharp decline in the magnitude of difference between Gazipur and Faridpur for grain arsenic was due to an exponential decline in the grain/shoot arsenic concentration ratio with increasing shoot arsenic concentration. When the Bangladesh data were compared to EU and US soil-shoot-grain transfers, the same generic pattern could be found with the exception that arsenic was more efficiently transferred to grain from soil/shoot in the Bangladesh grown plants. This may reflect climatic or cultivar differences.  相似文献   

4.
Arsenic contaminating groundwater in Bangladesh is one of the largest environmental health hazards in the world. Because of the potential risk to human health through consumption of agricultural produce grown in fields irrigated with arsenic contaminated water, we have determined the level of contamination in 100 samples of crop, vegetables and fresh water fish collected from three different regions in Bangladesh. Arsenic concentrations were determined by hydride generation atomic absorption spectrophotometry. All 11 samples of water and 18 samples of soil exceeded the expected limits of arsenic. No samples of rice grain (Oryza sativa L.) had arsenic concentrations more than the recommended limit of 1.0 mg/kg. However, rice plants, especially the roots had a significantly higher concentration of arsenic (2.4 mg/kg) compared to stem (0.73 mg/kg) and rice grains (0.14 mg/kg). Arsenic contents of vegetables varied; those exceeding the food safety limits included Kachu sak (Colocasia antiquorum) (0.09-3.99 mg/kg, n=9), potatoes (Solanum tuberisum) (0.07-1.36 mg/kg, n=5), and Kalmi sak (Ipomoea reptoms) (0.1-1.53 mg/kg, n=6). Lata fish (Ophicephalus punctatus) did not contain unacceptable levels of arsenic. These results indicate that arsenic contaminates some food items in Bangladesh. Further studies with larger samples are needed to demonstrate the extent of arsenic contamination of food in Bangladesh.  相似文献   

5.
Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L?1 with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 μg L?1 (mean 220.2 μg L?1) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 μg L?1 (mean 85.3 μg L?1) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk.  相似文献   

6.
Rice plays a major role in the global supply and demand for sustainable food production. The constraints of maintaining sustainable rice production are closely linked to the relationship between the distribution patterns of human activity on the planet and economic growth. Global patterns of rice production can be mapped by using various criteria linked to domestic income, population patterns, and associated satellite brightness data of rice-producing regions. Prosperous regions have more electric lighting, and there are documented correlations between gross domestic product (GDP) and nighttime light. We chose to examine global rice production patterns on a geographical basis. For the purposes of this study, each country is considered to be made up of regions, and rice production is discussed in terms of regional distribution. A region is delineated by its administrative boundaries; the number of regions where rice is produced is about 13,839. We used gridded spatial population distribution data overlain by nocturnal light imagery derived from satellite imagery. The resultant relationship revealed a correlation between regional income (nominal values of GDP were used) and rice production in the world. The following criteria were used to examine the supply and demand structure of rice. Global rice consumption = “caloric rice consumption per capita per day” multiplied by “regional population values”. Regional rice yields = “country-based production” divided by “harvested area” (multiple harvests are taken into account). Regional rice production = “regional harvested areas” multiplied by “rice yield values”. We compared regional rice consumption and production values according to these methods. Analysis of the data sets generated a map of rice supply and demand. Inter-regional shipping costs were not accounted for. This map can contribute to the understanding of food security issues in rice-producing regions and to estimating potential population values in such regions.  相似文献   

7.
The study aimed to estimate resource use efficiency and economic losses by using stochastic frontier analysis. The data set were collected in An Giang Province of Vietnam through personal interviews with 199 rice farmers. The results revealed that returns to scale are decreasing. Rice farmers had high levels of output-oriented and input-oriented technical efficiency with the means of 91.92 and 85.39 %, respectively. The mean environmental efficiency was 82.03 %. The mean efficiency of normal inputs was 61.20 %. Among the bad inputs, pesticide and energy were the least efficient ones with the mean values of 51.39 and 45.53 %, respectively, indicating serious overuses of these inputs. As regards normal inputs, capital had the lowest efficiency score at 21.08 %, followed by seed quantity at 26.4 %. Further, the total economic losses were estimated at 8261 thousand VND (380 USD) per hectare, which is equal to the sales of about 1600 kg of rice per hectare or the efforts to increase by 20 % of output level. This study suggests that rice farmers need to contract inputs, particularly environmentally detrimental inputs to improve profits. To improve the productive efficiency, the use of ecological engineering, collective pump and cultivation of three rice crops per year are possible options.  相似文献   

8.
Arsenic level of hair samples of apparently healthy Egyptian was measured by means of hydride atomic absorption spectrophotometery. It ranged between 0.04 and 1.04 mg As/kg hair, about 55% of the analysed hair samples were within the range of allowable values (0.08-0.25 mg As/kg hair), but 45% were not. There were no considerable sex-related differences (0.303 and 0.292 mg As/kg hair for males and females, respectively). Different educational levels did not influence it either, when the effect of the age had been excluded. Children and adolescents proved to be more susceptible to arsenic as their mean levels (0.353 microg/g), and were significantly higher than those in the adults (0.233 microg/g). Smoking and some dietary habits had an important role in the elevation of arsenic levels among the nonoccupational Egyptian population: 60% of smokers and 66.7% of indoor passive smokers had arsenic levels >0.25 mg As/kg hair. Arsenic levels were also dependent on the kind of smoking, as hair arsenic of the subject smoking molasses tobacco was found to be significantly higher than that of cigarette smokers (0.459 and 0.209 mg As/kg hair, respectively). The frequency of meat and fish consumption per week was also found to be positively, significantly correlated with arsenic levels. On the other hand, the frequency of consumption of fruits, fresh and cooked vegetables, milk and milk products per week beneficially influenced the arsenic level of the hair samples examined. Arsenic content of the consumed water in Egypt was 0.001 mg/l, which is below the maximum drinking water level allowed by World Health Organisation (WHO). Therefore, the arsenic content of domestic tap water hardly contributed to the arsenic exposure of the Egyptian population in the regions of the study. It is likely that exposure routes by smoking, fish and animal protein consumption are the principal cause of arsenic accumulation in the general Egyptian population.  相似文献   

9.
Polychlorinated biphenyls and methylmercury are two of the most ubiquitous environmental contaminants in Guizhou province. Rice is eaten with almost every meal and provides more calories than any single food in Guizhou province. The estimated tolerable daily intake of total mercury, MeHg, Se and PCBs from Guizhou contaminated rice by Chinese people showed that MeHg and/or PCBs exceeded the corresponding limits. The aim of this study was to characterize the effects of exposure to environmental contaminated rice on neurobehavioral development and neurobiological disruptions in mice. Animals were treated from postnatal day (PND) 22 to 91. At PND 26–91 days of age, mice were tested for neurobehavioural development and neurochemical level changes. We showed that dietary exposure to environmentally contaminated rice gave rise to different changes in antioxidants. Reduced superoxide dismutase (SOD) activity and excess increased nitric oxide (NO) indicated aggravation of oxidative status after long-term dietary intake of Hg and PCBs. Neurobehavioral derangement in the central nervous system and significant delay in the Morris water maze test response on PND 91 are correlated with the increased of c-fos/c-jun expression levels in the cerebral cortex. These results suggest that MeHg neurotoxicity might be a greater hazard than that associated with PCB, but PCB may augment the neurobehavioral deficits caused by increased levels of mercury exposure. The simultaneous intake of selenium might have a protective effect on Hg accumulation in the body, and vitamin C might protect mice against the toxic effects of PCBs. However, the protective role of Se and vitamin C is very limited for multiple-agent pollution. Immediately early genes in the brain response to contaminated rice might be dependent on interaction among NO, NO synthase (NOS), SOD and reduced glutathione (GSH). We should be alert to mental health problems in human beings when any kind of Hg- and PCB-polluted food is consumed.  相似文献   

10.
The stable Sr content in the aboveground parts of rice plants at various growth stages, and the distributions of 90Sr and stable Sr in rice plant components, such as polished rice, rice bran, hull, straw and root, at harvest time, were determined. The total Sr content in the aboveground rice plants was dependent on the growth stage and followed the sigmoidal shape of the growth curve. The concentration of 90Sr among the different components of rice plants varied within two orders of magnitude, whereas the 90Sr/Sr concentration ratio had a constant value. Therefore, the translocation rate of 90Sr in rice plants had similar values to that of stable Sr. However, the 90Sr/Sr concentration ratio for the rice plants was different for each study site. Only 0.6% of the total Sr was found in polished rice, while more than 99% was found in the non-edible components, of which 87% was present in the straw. These findings suggest that 90Sr in the non-edible parts could have been transferred to humans through the soil-plant system and/or feed-livestock pathway. The soil-to-plant transfer factor of 90Sr in polished rice was 0.0021 +/- 0.00007, which was two orders of magnitude lower than that in the straw. The percentage of 90Sr removed from the upper soil layer to the aboveground biomass of rice plants at harvest time was calculated as 0.094%. It is possible that approximately 0.1% of the total 90Sr content in the surface soil layer is removed from the soil-plant system by human activities every year.  相似文献   

11.
In order to assess soil As contamination and potential risk for human, soil, paddy rice, vegetable and human hair samples from the areas near the industrial districts in Chenzhou, southern China were sampled and analyzed. The results showed that the anthropogenic industrial activities have caused in local agricultural soils to be contaminated with As in a range of 11.0-1217 mg/kg. The GIS-based map shows that soil contamination with As occurred on a large scale, which probably accounted for up to 30% of the total area investigated. Soil As concentration abruptly decreased with an increase in the distance from the polluting source. High As concentrations were found in the rice grain that ranged from 0.5 to 7.5 mg/kg, most of which exceed the maximal permissible limit of 1.0 mg/kg dry matter. Arsenic accumulated in significantly different levels between leafy vegetables and non-leafy vegetables. Non-leafy vegetables should be recommended in As-contaminated soils, as their edible parts were found in relatively low As level. Arsenic concentrations in 95% of the total human hair samples in the contaminated districts were above the critical value, 1.0 mg/kg, set by the World Health Organization. Arsenic could be enriched in human hair to very high levels without being affected by As containing water. The results revealed that the soils and plants grown on them are major contributors to elevate hair As in the industrial population. Therefore, the potential impact on human health of ingestion/inhalation of soil As around the industrial districts seems to be rather serious. Hence proper treatments for As contaminated soils are urgently needed to reduce the contamination.  相似文献   

12.
As part of a project on phytoextraction of lead (Pb) in paddy soils around a lead/zinc (Pb/Zn) Mine in Lechang of Guangdong Province, South China, the concentration distribution of Pb in paddy soil-rice system was investigated, and its potential health risk to animal/human was evaluated. Total and diethylenetetraminepentaacetic acid (DTPA)-extractable Pb in soils averaged 1486 and 268 microg/g, respectively. According to sequential extraction procedure, soil Pb occurred primarily in the residual, carbonate and exchangeable fractions (30.2%, 26.7% and 19.1%, respectively). Lead extracted by the gastric juice simulation test (GJST) was 1068 microg/g and accounted for 75.4% of the total concentration. Mean Pb concentrations of 419 microg/g in rice root, 69.1 microg/g in whole straw, 51.0 microg/g in part straw (without two leaves near above the root), 44.9 microg/g in stalk, 21.9 microg/g in hull, 13.2 microg/g in grain with hull and 4.67microg/g in grain without hull (namely, unpolished rice) were found. Lead concentrations in both soil and rice plant were far above the corresponding tolerable levels. Lead daily intakes by local residents were 2.6 mg for adults and 1.2 mg for children, which were much higher than the allowable level. Thus, Pb in this area might pose a potential health risk to the local population.  相似文献   

13.
The critical paths for radionuclides and the critical foods in Asian countries differ from those in Western countries because agricultural products and diets are different. Consequently, safety assessments for Asian countries must consider rice as a critical food. As most rice is produced under flooded conditions, the uptake of radionuclides by rice is affected by soil conditions. In this report, we summarize radionuclide and stable element soil-to-plant transfer factors (TFs) for rice. Field observation results for fallout 137Cs and stable Cs TFs indicated that while fallout 137Cs had higher TF than stable Cs over several decades, the GM (geometric mean) values were similar with the GM of TF value for 137Cs being 3.6 × 10−3 and that for stable Cs being 2.5 × 10−3. Although there are some limitations to the use of TF for stable elements under some circumstances, these values can be used to evaluate long-term transfer of long-lived radionuclides in the environment. The compiled data showed that TF values were higher in brown rice than in white rice because distribution patterns for elements were different in the bran and white parts of rice grains.  相似文献   

14.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   

15.
With the worldwide intensification of agriculture, non-point source pollution of surface waters has become a pressing issue. Conventional river water quality models consider non-point sources as accumulated entries into the rivers and do not investigate into the processes generating the pollution at its source, thus preventing the determination of effective mitigation measures. The models require extensive data inputs, which is a deficiency in many developing and emerging countries with limited data availability. The current study applies a Material Flow Model as a complementary approach to quantify non-point source pollution from agricultural areas. Rice farming in the Thachin River Basin is presented as a case study, with a focus on nutrients. The total nitrogen and phosphorus flows from rice farming to the river system are quantified, the key parameters influencing these flows are determined and potential mitigation measures are discussed. The results show that rice contributes considerable nutrient loads to the Thachin River Basin. Scenario simulations demonstrate that a significant nutrient load reduction could be achieved by following the official recommendations for fertilizer application, thus confirming the local efforts to introduce best management practice. Our results underline the importance of non-point source pollution control in intensive agricultural areas, particularly of tropical lowland delta areas such as the Central Plains of Thailand. The specific benefit of applying a Material Flow Model in this context is that with limited data availability, one can reach an understanding of the system and gain a first overview over its key pollution problems. This can serve as supportive basis for determining consecutive in-depth research requirements.  相似文献   

16.
This paper reviews the current knowledge on the toxicity, speciation and biogeochemistry of arsenic in aquatic environmental systems. The toxicity of arsenic is highly dependent on the chemical speciation. The effects of pH, Eh, adsorbing surfaces, biological mediation, organic matter, and key inorganic substances such as sulfide and phosphate combine in a complex and interwoven dynamic fashion to produce unique assemblages of arsenic species. The number of different arsenic species found in environmental samples and an understanding of the transformations between arsenic species has increased over the past few decades as a result of new and refined analytical methods. Changes in arsenic speciation and in total arsenic content of foods upon processing have suggested possible risks associated with processed and unprocessed food. Arsenic removal from water using adsorbents, chemical oxidation, photolysis and photocatalytic oxidation techniques is also reviewed.  相似文献   

17.
As a new emerging environmental contaminant, perchlorate has prompted people to pay more attention. The presence of perchlorate in the human body can result in improper regulation of metabolism for adults. Furthermore, it also causes developmental and behavioral problems for infants and children because it can interfere with iodide uptake into the thyroid tissue. In this paper, perchlorate in sewage sludge, rice, bottled drinking water and milk was detected for investigating the perchlorate pollution status in China. The places, where the samples were collected, cover most regions of China. Therefore, the final data on perchlorate levels will give an indication of the perchlorate pollution status in China. The final determination of perchlorate was performed by ion chromatography-electrospray tandem mass spectrometry with negative mode. The concentration of perchlorate in sewage sludge, rice, bottled drinking water and milk was in the range of 0.56-379.9 microg/kg, 0.16-4.88 mug/kg, 0.037-2.013 microg/L and 0.30-9.1 microg/L, respectively. The results show that perchlorate has been widespread in China.  相似文献   

18.
BackgroundThere is very limited information on the association between arsenic and serum uric acid levels or gout. The aim of this study was to investigate the association of arsenic with hyperuricemia and gout in US adults.MethodsA cross-sectional study was conducted in 5632 adults aged 20 years or older from the National Health and Nutrition Examination Survey (NHANES) 2003–2010 with determinations of serum uric acid and urine total arsenic and dimethylarsinate (DMA). Hyperuricemia was defined as serum uric acid higher than 7.0 mg/dL for men and 6.0 mg/dL for women. Gout was defined based on self-reported physician diagnosis and medication use.ResultsAfter adjustment for sociodemographic factors, comorbidities and arsenobetaine levels, the increase in the geometric means of serum uric acid associated with one interquartile range increase in total arsenic and DMA levels was 3% (95% CI 2–5) and 3% (2–5), respectively, in men and 1% (0–3) and 2% (0–4), respectively, in women. In men, the adjusted odds ratio for hyperuricemia comparing the highest to lowest quartiles of total arsenic was 1.84 (95% CI, 1.26–2.68) and for DMA it was 1.41 (95% CI, 1.01–1.96). The corresponding odds ratios in women were 1.26 (0.77, 2.07) and 1.49 (0.96, 2.31), respectively. The odds ratio for gout comparing the highest to lowest tertiles was 5.46 (95% CI, 1.70–17.6) for total arsenic and 1.98 (0.64–6.15) for DMA among women older than 40 years old. Urine arsenic was not associated with gout in men.ConclusionLow level arsenic exposures may be associated with the risk of hyperuricemia in men and with the prevalence of gout in women. Prospective research focusing on establishing the direction of the relationship among arsenic, hyperuricemia, and gout is needed.  相似文献   

19.
Historical use of high arsenic (As) concentrations in cattle/sheep dipping vat sites to treat ticks has resulted in severe contamination of soil and groundwater with this Group-A human carcinogen. In the absence of a universally applicable soil As bioaccessibility model, baseline risk assessment studies have traditionally used the extremely conservative estimate of 100% soil As bioaccessibility. Several in-vitro, as well as, in-vivo animal studies suggest that As bioaccessibility in soil can be lower than that in water. Arsenic in soils exists in several geochemical forms with varying degree of dissolution in the human digestive system, and thus, with highly varying As bioaccessibility. Earlier batch incubation studies with As-spiked soils have shown that As bioaccessibility is a function of soil physicochemical properties. We selected 12 dipping vat soils collected from USA and Australia to test the hypothesis that soil properties exert a significant effect on As bioaccessibility in As-contaminated sites. The 12 soils varied widely in terms of soil physico-chemical properties. They were subject to an As sequential fractionation scheme and two in-vitro tests (IVGS and IVGIA) to simulate soil As bioavailability in the human gastrointestinal system. Sequential As fractionation results showed that the majority of the As measured in the dipping vat soils resided either in the Fe/Al hydroxide fraction, or the Ca/Mg fractions, or in the residual fraction. Water-extractable As fraction of the 12 soils was typically <10% of the total, reaching values up to 23%, indicating minimal leaching potential, and hence, lower risk of As-contamination from exposure to groundwater, typically used as drinking water in many parts of the world. Partial individual correlations and subsequent multiple regression analyses suggested that the most significant soil factors influencing As bioaccessibility were total Ca+Mg, total P, clay content and EC. Collectively, these soil properties were able to explain 85 and 86% of the variability associated with the prediction of bioaccessible As, using IVGS and IVGIA in-vitro tests, respectively. This study showed that specific soil properties influenced the magnitude of soil As bioaccessibility, which was typically much lower than total soil-As concentrations, challenging the traditional risk assessment guideline, which assumes that soil As is 100% bioaccessible. Our study showed that total soil As concentration is unlikely to provide an accurate estimate of human health risk from exposure to dipping vat site soils.  相似文献   

20.
The characteristics of arsenic-contaminated groundwater and the potential risks from the groundwater were investigated. Arsenic contamination in groundwater was found in four villages (Vinh Tru, Bo De, Hoa Hau, Nhan Dao) in Ha Nam province in northern Vietnam. Since the groundwater had been used as one of the main drinking water sources in these regions, groundwater and hair samples were collected in the villages. The concentrations of arsenic in the three villages (Vinh Tru, Bo De, Hoa Hau) significantly exceeded the Vietnamese drinking water standard for arsenic (10 microg/L) with average concentrations of 348, 211, and 325 microg/L, respectively. According to the results of the arsenic speciation testing, the predominant arsenic species in the groundwater existed as arsenite [As(III)]. Elevated concentrations of iron, manganese, and ammonium were also found in the groundwater. Although more than 90% of the arsenic was removed by sand filtration systems used in this region, arsenic concentrations of most treated groundwater were still higher than the drinking water standard. A significant positive correlation was found between the arsenic concentrations in the treated groundwater and in female human hair. The risk assessment for arsenic through drinking water pathways shows both potential chronic and carcinogenic risks to the local community. More than 40% of the people consuming treated groundwater are at chronic risk for arsenic exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号