首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 484 毫秒
1.
利用微生物燃料电池回收含铜废水中的铜   总被引:1,自引:1,他引:0  
印霞棐  刘维平  姜璐 《环境工程》2014,32(9):152-157
微生物燃料电池(MFC)是一种利用微生物新陈代谢作用将化学能转化为电能的装置。实验以石墨为电极材料,有机废水为阳极底物,以厌氧活性污泥为厌氧菌种,含铜废水为阴极液,构建了双室MFC反应器。研究了利用双室MFC产电的同时从含铜废水中回收单质铜的可行性,结果表明:连续流MFC最大电流密度可达0.63 mA/m2,产电性能略好于间歇流MFC。加入磷酸盐缓冲溶液的连续流MFC,其最大电流密度可达4.44 mA/m2,是加入磷酸盐缓冲溶液的间歇流MFC的7.05倍,是未加入磷酸盐缓冲溶液的连续流MFC的1.92倍。间歇流MFC阴极石墨棒上的沉积物为Cu2O,连续流MFC阴极石墨棒上的沉积物为Cu和Cu2O的混合物。MFC对含铜废水中Cu2+去除率均可达80%左右,尤其是连续流MFC,对Cu2+去除率可达99%以上。  相似文献   

2.
微生物燃料电池(MFC)是一种利用微生物新陈代谢作用将化学能转化为电能的装置。实验以石墨为电极材料,有机废水为阳极底物,以厌氧活性污泥为厌氧菌种,阴极室分别接种驯化后的好氧生物污泥、厌氧生物污泥、含铜废水、FeCl3溶液,构建了双室MFC并比较了4种MFC的产电性能。结果表明:连续流状态下,好氧生物阴极MFC产电性能略优于厌氧生物阴极MFC;间歇流好氧生物阴极MFC其最大电流密度是连续流好氧生物阴极MFC的1.38倍。间歇流状态下,FeCl3溶液为阴极液MFC产电性能略优于以含铜废水为阴极液的MFC。连续流状态下,以含铜废水为阴极液MFC产电性能远远高于连续流生物阴极MFC。  相似文献   

3.
微生物燃料电池利用甘薯燃料乙醇废水产电的研究   总被引:3,自引:2,他引:1  
蔡小波  杨毅  孙彦平  张良  肖瑶  赵海 《环境科学》2010,31(10):2512-2517
利用空气阴极微生物燃料电池(MFC)处理甘薯燃料乙醇废水,以COD为5000mg/L的废水做底物,获得的最大电功率密度为334.1mW/m2,库仑效率(CE)为10.1%,COD去除率为92.2%.实验进一步考察了磷酸缓冲液(PBS)浓度和废水浓度对MFC产电性能的影响.PBS含量从50mmol/L增加到200mmol/L,MFC输出的最大电功率密度提高了33.4%,CE增加26.0%,但PBS对废水的COD去除率影响不大.含50mmol/LPBS的废水COD从625mg/L增加到10000mg/L,COD去除率和MFC输出的最大电功率密度在废水浓度为5000mg/L处均获得最大值,但CE值有降低的趋势,从28.9%变化至10.3%.这些结果表明,MFC可以在处理甘薯燃料乙醇废水的同时获得电能;增大PBS浓度能提高MFC的产电性能;MFC输出的最大电功率密度随废水COD增加而增大,但废水浓度过高会引起酸化使MFC产电性能下降.  相似文献   

4.
该实验的研究对象为连续流双室微生物燃料电池,同时考察连续流微生物燃料电池的污水处理、发电和重金属离子(Cu~(2+)、Ni~(2+)、Cr~(6+)、Cd~(2+)电镀废水,500 mg/L)的处理回收效果并与传统单室微生物燃料电池进行对比。在厌氧环境下以微生物本身作为催化剂,利用人工配成的糖蜜废水作为阳极底物,不同有毒重金属离子溶液作为阴极底物。试验结果表明,在外电阻(1 000Ω)相同的情况下得到Crr~(6+)电镀废水作为阴极时的产电性能最佳,获得最大电压U=114.2 mV,功率密度P=35.648 8 mW/m~2,库伦效率CE=44.13%,同时得到最高金属离子去除率66%。相比之下Cu~(2+)阴极液组产电效果较差,电压稳定值不足0.01 V,功率密度P=6.059 m W/m~2与库伦效率CE=3.78%均为最低值。在阳极均实现了对模拟糖蜜废水的降解,处理效果最显著的是Cd~(~(2+))阴极液组,COD去除率达到78%。最后对MFC阴极还原产物进行了X射线衍射分析,得到Cu~(2+)还原产物包括Cu_2O与铜单质,Crr~(6+)主要被还原成Cr_2O_3,Cd~(2+)与Ni~(2+)主要生成单质状态。采用X射线衍射分析阴极电极还原物质,经计算机检索与国际标准PDF对照。得到4组不同阴极液中,Cu~(2+)被还原生成Cu_2O晶体与单质铜。Ni~(2+)被还原生成镍单质。而Cr~(6+)与Cd~(2+)阴极液组中分别出现Cr_2O_3与单质镉的晶体衍射峰。  相似文献   

5.
通过优化阴极材料,构建新型单室无膜壁式空气阴极微生物燃料电池,开展了污泥浓度、阳极面积、导线材料和NaCl离子浓度等影响因素及其优化试验研究。结果显示:在恒温30℃和外接电阻1 000Ω的条件下,以铜线为导线,污泥浓度为21 000 mg/L,阳极面积为31.4 cm2,Na+浓度为200 mmol/L时,其产电性能最佳,最大电压为597 mV,最大输出功率密度为301 mW/m2,内阻为92.5Ω。此外,还分析了污泥运行过程中的变化。与目前其他以未经过预处理的剩余污泥作为底物的微生物燃料电池相比,该新型单室无膜壁式空气阴极微生物燃料电池功率密度较高,内阻较低。  相似文献   

6.
利用双室微生物燃料电池处理模拟废水的产电特性研究   总被引:2,自引:1,他引:1  
本实验通过研究电池的启动过程、阳极有机物降解率和阴极Cu2+的去除率,评价了微生物燃料电池(microbial fuel cell,MFC)的产电和处理废水性能.以模拟糖蜜废水作为阳极基质,模拟电镀废水作阴极电子受体,建立简单的双室微生物燃料电池.结果表明在外电阻为800Ω的情况下,电池得到最大电压417.00 mV,从极化曲线上获得最大输出功率密度44.17mW.m-2,内阻为293Ω.电池在第五周期时,COD去除率也达到最高47.31%.在第四周期内,Cu2+最大的去除率为59.76%.综上所述,MFC在处理有机废水和电镀废水方面具有可行性.  相似文献   

7.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

8.
双室微生物燃料电池处含银废水的产电性研究   总被引:1,自引:1,他引:0  
以剩余污泥为阳极底,糖蜜废水为基质,Ag Cl废水为阴极电子受体,构建了双室微生物燃料电池(Two-chamber Microbial Fuel Cell,简称MFCs),并研究了电池的产电特性、库仑效率及金属去除率.结果表明:Ag+不仅可以作为阴极电子受体,而且还能稳定产电,外电阻为1000Ω时,获得的最大电压为514.5 m V,最大功率密度为65.82 m W·m-2.在阴极实现了对废水中Ag+的去除,最大去除率可达71.6%,而且Ag+浓度为2000 mg·L-1时,回收金属银单质质量为197.66 g.在阳极对废水的处理效果也很显著,库仑效率最高为2.66%,COD去除率最大为81.22%.  相似文献   

9.
采用电化学双极法处理高浓度含铜黄连素制药废水。在分析其水质特征的基础上,分别考察了极板间距、电流和初始pH等因素对废水中黄连素和Cu2+去除率的影响。结果表明:无需添加电解质与氧化剂,在极板间距为2.0cm,电流为4.0 A,不调节废水pH的条件下,处理时间300 min内,黄连素和Cu2+浓度分别由初始的1 700和22 000mg/L下降至120和55.0 mg/L,去除率达93.3%和99.9%以上。通过计算得出,铜的平均回收率达到97.1%,即处理每t废水可回收铜21.4 kg。由此可见,电化学双极法既降解了废水中黄连素,又回收了大部分的铜。  相似文献   

10.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:6,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号