首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The conversion of natural habitat to urban settlements is a primary driver of biodiversity loss, and species' persistence is threatened by the extent, location, and spatial pattern of development. Urban growth models are widely used to anticipate future development and to inform conservation management, but the source of spatial input to these models may contribute to uncertainty in their predictions. We compared two sources of historic urban maps, used as input for model calibration, to determine how differences in definition and scale of urban extent affect the resulting spatial predictions from a widely used urban growth model for San Diego County, CA under three conservation scenarios. The results showed that rate, extent, and spatial pattern of predicted urban development, and associated habitat loss, may vary substantially depending on the source of input data, regardless of how much land is excluded from development. Although the datasets we compared both represented urban land, different types of land use/land cover included in the definition of urban land and different minimum mapping units contributed to the discrepancies. Varying temporal resolution of the input datasets also contributed to differences in projected rates of development. Differential predicted impacts to vegetation types illustrate how the choice of spatial input data may lead to different conclusions relative to conservation. Although the study cannot reveal whether one dataset is better than another, modelers should carefully consider that geographical reality can be represented differently, and should carefully choose the definition and scale of their data to fit their research objectives.  相似文献   

2.
Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA. Several general valuation metrics were developed for three broad categories: site use by groups of organisms, site rarity, and use value added from spatial context. Examples of use value metrics are taxa richness, a direct measure of number of species that inhabit an area, complexity of habitat structure, an indirect measure of potential number of species that may use the area, and land use designation, a measure of the length of time that the area will be available for use. Measures of rarity included presence of rare species or communities. Examples of metrics for habitat use value added from spatial context included similarity or complementarity of neighboring habitat patches and presence of habitat corridors. More specific metrics were developed for groups of organisms in contaminated streams, ponds, and terrestrial ecosystems. For each of these metrics, cutoff values for high, medium, and low habitat value were suggested, based on available information on distributions of organisms and landscape features, as well as habitat use information. A companion paper describes the implementation of these habitat valuation metrics and scoring criteria in the remedial investigation for ETTP.  相似文献   

3.
Nodes,networks, and MUMs: Preserving diversity at all scales   总被引:14,自引:0,他引:14  
The present focus of practical conservation efforts is limited in scope. This narrowness results in an inability to evaluate and manage phenomena that operate at large spatiotemporal scales. Whereas real ecological phenomena function in a space-time mosaic across a full hierarchy of biological entities and processes, current conservation strategies address a limited spectrum of this complexity. Conservation typically is static (time-limited), concentrates on the habitat content rather than the landscape context of protected areas, evaluates relatively homogeneous communities instead of heterogeneous landscapes, and directs attention to particular species populations and/or the aggregate statistic of species diversity. Insufficient attention has been given to broad ecological patterns and processes and to the conservation of species in natural relative abundance patterns (native diversity).The authors present a conceptual scheme that evaluates not only habitat content within protected areas, but also the landscape context in which each preserve exists. Nodes of concentrated ecological value exist in each landscape at all levels in the biological hierarchy. Integration of these high-quality nodes into a functional network is possible through the establishment of a system of interconnected multiple-use modules (MUMs). The MUM network protects and buffers important ecological entities and phenomena, while encouraging movement of individuals, species, nutrients, energy, and even habitat patches across space and time. An example is presented for the southeastern USA (south Georgia-north Florida), that uses riparian and coastal corridors to interconnect existing protected areas. This scheme will facilitate reintroduction and preservation of wide-ranging species such as the Florida panther, and help reconcile species-level and ecosystem-level conservation approaches.  相似文献   

4.
The US Army Land Condition-Trend Analysis (LCTA) program is a standardized method of data collection, analysis, and reporting designed to meet multiple goals and objectives. The method utilizes vascular plant inventories, permanent field plot data, and wildlife inventories. Vascular plant inventories are used for environmental documentation, training of personnel, species identification during LCTA implementation, and as a survey for state and federal endangered or threatened species. The permanent field plot data documents the vegetational, edaphic, topographic, and disturbance characteristics of the installation. Inventory plots are allocated in a stratified random fashion across the installation utilizing a geographic information system that integrates satellite imagery and soil survey information. Ground cover, canopy cover, woody plant density, slope length, slope gradient, soil information, and disturbance data are collected at each plot. Plot data are used to: (1) describe plant communities, (2) characterize wildlife and threatened and endangered species habitat, (3) document amount and kind of military and nonmilitary disturbance, (4) determine the impact of military training on vegetation and soil resources, (5) estimate soil erosion potential, (6) classify land as to the kind and amount of use it can support, (7) determine allowable use estimates for tracked vehicle training, (8) document concealment resources, (9) identify lands that require restoration and evaluate the effectiveness of restorative techniques, and (10) evaluate potential acquisition property. Wildlife inventories survey small and midsize mammals, birds, bats, amphibians, and reptiles. Data from these surveys can be used for environmental documentation, to identify state and federal endangered and threatened species, and to evaluate the impact of military activities on wildlife populations. Short- and long-term monitoring of permanent field plots is used to evaluate and adjust land management decisions.  相似文献   

5.
To facilitate forest planning and management on National Wildlife Refuges, we synthesized multiple data sources to describe land ownership patterns, land cover, landscape pattern, and changes in forest composition for four ecoregions and their associated refuges of the Upper Midwest. We related observed patterns to ecological processes important for forest conservation and restoration, with specific attention to refuge patterns of importance for forest landbirds of conservation priority. The large amount of public land within the ecoregions (31–80%) suggests that opportunities exist for coarse and meso-scale approaches to conserving and restoring ecological processes affecting the refuges, particularly historical fire regimes. Forests dominate both ecoregions and refuges, but refuge forest patches are generally larger and more aggregated than in associated ecoregions. Broadleaf taxa have increased in dominance in the ecoregions and displaced fire-dependent taxa such as pine (Pinus spp.) and other coniferous species; these changes in forest composition have likely also affected refuge forests. Despite compositional changes, larger forest patches on refuges suggests that they may provide better habitat for area-sensitive forest landbirds of mature, compositionally diverse forests than surrounding lands if management continues to promote increased patch size. We reason that although fine-scale research and monitoring for species of conservation priority is important, broad scale (ecoregional) assessments provide crucial context for effective forest and wildlife management in protected areas.  相似文献   

6.
As human influences fragment native communities and ecosystems, remaining land must be better managed to conserve many elements of biodiversity. Much of this land is privately held, yet traditional private land-use management practices often further diminish biodiversity by promoting favored or edge-adapted species. Today, private land stewards are increasingly aware of and concerned about biodiversity, but little guidance exists for them to make land-use decisions incorporating principles and knowledge from conservation biology. Consequently, most management strategies are highly subjective. This article addresses that problem by introducing current conservation wisdom to management and use of private lands. The result is a model program for developing land management plans, with the goal of maintaining viable populations and natural distributions of native species and communities from a landscape perspective. The program establishes a protocol for classifying sites according to the importance of their species, communities, and other elements to global and regional biodiversity. These site classifications are based on the management objectives necessary to maintain important elements. Once managers classify a site, the program provides management standards, general stewardship principles, examples of land management strategies, and basic monitoring and evaluation procedures.  相似文献   

7.
Ecological restoration as a strategy for conserving biological diversity   总被引:1,自引:0,他引:1  
Though the restoration of disturbed ecosystems has so far played a relatively modest role in the effort to conserve biological diversity, there are reasons to suspect that its role will increase and that its contribution to the maintenance of diversity will ultimately prove crucial as techniques are further refined and as pristine areas for preservation become scarcer and more expensive.It is now possible to restore a number of North American communities with some confidence. However, it should be noted that many current efforts to return degraded lands to productive use, like attempts to reclaim land disturbed by mining, try only for rehabilitation to a socially acceptable condition and fall considerably short of actually restoring a native ecological community.Possible uses for restoration in the conservation of biodiversity include not only the creation of habitat on derelict sites, but also techniques for enlarging and redesigning existing reserves. Restoration may even make it possible to move reserves entirely in response to long-term events, such as changes in climate. Restoration in the form of reintroduction of single species to preexisting or restored habitat is also a critical link in programs to conserve species ex situ in the expectation of eventually returning them to the wild. And restoration provides opportunities to increase diversity through activities as diverse as management of utility corridors, transportation rights-of-way, and parks.  相似文献   

8.
In terms of their numerical abundance, size, and species richness, ants are a prominent taxonomic group in many terrestrial ecosystems This, and the fact that ants occupy higher trophic levels and often specialised niches, suggests that they may be good bio-indicators of various environmental parameters This paper develops the rationale for using ants as bio-indicators and reviews examples of their use Parameters which are considered include ant species richness, species density, Shannon's diversity index, evenness index, and Mountford's similarity index The possible use of indicator species or groups is also discussed although, in Australia, this is still in its exploratory stage The examples given in this paper suggest that a consideration of ant species richness and evenness and also the Mountford's similarity index provides significant insight into the composition of a habitat and of the degree of disturbance Some applications of the ant bio-indicator concept include providing of base-line data in pre-development situations; monitoring ecosystem recovery following land rehabilitation, monitoring degree of ecosystem degradation, and the understanding of faunal composition and status of conservation areas  相似文献   

9.
Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.  相似文献   

10.
Habitat re-creation is one of the multiple faces of biodiversity restoration and encompasses the attempts to reconstruct an ecosystem on severely disturbed sites with little left to restore. Afforestation of abandoned or marginal agricultural land is an important tool for the re-creation of forest ecosystems and re-establishment of functional habitat networks for the maintenance of biodiversity. This study was performed in the context of the Danish-Lithuanian project ‘Afforestation of abandoned agricultural land based on sustainable land use planning and environmentally sound forest management’. The study assessed how habitat re-creation as designed in alternative afforestation plans for two administrative regions in Lithuania will affect the functionality of the landscapes for bird species of conservation concern. Spatial analysis of the forest cover was performed under existing and proposed conditions using general landscape ecological principles concerning core and edge habitats as well as nearest-neighbour metrics. The results show that the use of general criteria may result in proportionally negative changes in the availability of some forest habitats relative to changes in total forest cover, thus leading to less significant improvements in the habitats of many naturally occurring (and even protected) species compared to what would be expected from changes in forest cover alone. To solve this dilemma it is suggested that the requirements of focal species and quantitative conservation objectives should be considered in a spatially explicit – each main forest type. It is concluded that to ensure functionality of habitat networks, knowledge and experience from the fields of landscape ecology and conservation biology should be more commonly incorporated into afforestation planning.  相似文献   

11.
Urbanization and the Loss of Resource Lands in the Chesapeake Bay Watershed   总被引:3,自引:0,他引:3  
We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.  相似文献   

12.
ABSTRACT: Traditional development in South Florida has in many cases resulted in undesirable degradation of terrestrial and aquatic ecosystems, due to overdrainage and overenrichment of surface waters. The study described in this paper was undertaken in order to establish guidelines under which urban development may take place in coastal areas, while minimizing unwanted environmental changes. The study area consists of approximately 70 square miles of relatively flat land in Collier County, Florida. The coastal wetlands of the region are a highly valued natural resource containing the Rookery Bay Wildlife Sanctuary. The upland properties are mainly pine woodlands and have great potential for development. A master plan was developed which will (1) provide adequate drainage for existing and projected development within the study area and (2) maintain the integrity of the estuarine zone. The major recommendations of the plan relate to land use, physical control of surface waters, including construction and maintenance of the water management system, and implementation of the plan.  相似文献   

13.
The present research focused on using spatial analysis to determine relationships among land ownership property sizes and landscape structure, with a focus on conservation management implications. Indices and metrics of ownership property sizes and landscape structure were calculated for 20 km buffer areas around 31 North American Breeding Bird Survey transects, 12 located within the Edwards Plateau ecoregion and 18 in contiguous ecoregions. The number of bird species observed at each transect provided a measure of avian species richness associated with land cover classes for each respective transect (González in Urban influence on diversity of avifauna in the Edwards Plateau of Texas: effect of property sizes on rural landscape structure, Texas A&M University, 2005). Spatial correlations were calculated between each pair of the landscape indices. Spatial analysis identified a “threshold of habitat fragmentation” for the 500 acre (ac) ownership property size. Significant spatial correlations among variables showed that property sizes lower than 500 ac produced habitat fragmentation represented by a decrease in mean patch size (MN) and proximity among habitat patches (Index PROX). Spatial analysis also made possible the prioritization of ecological sub-regions of the Edwards Plateau for conservation or restoration. The Live Oak-Mesquite Savannah showed the highest average ownership property size (7305 ac) and the highest values of patch richness. Based on the results, management in the Live Oak-Mesquite Savannah sub-region should focus on the conservation of land mosaic diversity to assure native avian species turnover (Whittaker 1972). In Balcones Canyon Lands, 64 % of land was covered by farms smaller than 500 ac and the overall average ownership property size was above the threshold of fragmentation (1440 ac), implying that management policies there should focus both on habitat conservation and on restoration. In contrast, 71 % of land in the Lampasas Cut Plains was covered by farms smaller than 500 ac, and average ownership property size was very close to the fragmentation threshold (625 ac). Consequently, the results indicate that management in the Lampasas Cut Plains sub-region should focus on habitat restoration (e.g., corridors that connect isolated habitat patches). In general, the threshold of ownership property size, 500 ac, is important for conservation planning because below that threshold of property size, habitat patch size begins to decrease and the distance between equivalent patches of habitat increases. Isolated patches act as islands within a sea of less suitable habitat which produce negative effects on biodiversity. Identifying the spatial characteristics indicative of habitat fragmentation, or the likelihood thereof, is an important issue for conservation planning in places with urban sprawl influence.  相似文献   

14.
The proper representation of conservation practices on agricultural lands is an important factor in large‐scale assessments of water quality in the United States. Unfortunately, there are few publicly available data sources at the local level and even fewer at the national scale. In this research, randomly selected points within agricultural lands were examined for selected conservation practices using Google Earth aerial imagery by a team of interpreters. In total, 13,530 points had field boundaries digitized, and were subsequently examined and classified. The presence of terraces, grassed waterways, contour farming, center pivot irrigation, strip cropping, ponds, riparian vegetation, filter strips, and land cover were noted. Subjectivity among interpreters was evaluated using duplicate samples and was found to be similar to image misclassification rates in other research. Conservation practice adoption rates for selected major river basins compared favorably with data collected by the Conservation Effects Assessment Project. The frequency of occurrence of each conservation practice was summarized and presented by ecoregion. To facilitate future research, point level data and software source code developed in this research are available via the web at http://nlet.brc.tamus.edu/Conservation . Aerial imagery was found to be a powerful, inexpensive, and easily accessible tool to assess large‐scale conservation practice implementation for certain conservation practices.  相似文献   

15.
Using ecological criteria to evaluate wilderness planning options in Idaho   总被引:1,自引:0,他引:1  
Legally designated wilderness areas are acknowledged to be an important element in strategies to conserve biological diversity in United States. However, because of the restrictions on consumptive uses in wilderness, their establishment is normally contentious. Criteria for establishment have typically been associated with opportunity and aesthetic and experiential values. Biological data have not normally played a major role in guiding wilderness establishment. We present four wilderness allocation options for those public lands considered suitable for wilderness designation in Idaho. These options cover the span of choices presently available to wilderness planners in the state and range from not establishing any new wilderness areas to the inclusion of all suitable lands in wilderness. All options are evaluated using spatial biological data from the National Biological Survey's Gap Analysis Project. A conservation strategy that would protect a minimum of 10% of the area occupied by each of 113 native vegetation types and at a minimum 10% of the distribution of each of 368 vertebrate species was evaluated for each option. Only the inclusion of all suitable lands in wilderness, creating a system of 5.1 million ha came close to achieving these goals, protecting 65% of the vegetation types and 56% of the vertebrate species. We feel this approach, which allows planners to evaluate the ecological merits of proposed widerness units along with other values, can provide a means to resolve the impasse over additional wilderness designation in Idaho.  相似文献   

16.
Given the nature of modern conservation acquisitions, which often result from gifts and opportunistic purchases of full or partial property rights, there is a risk that the resulting mosaic of conserved resources may not represent a coherent set of public values and benefits. With different public and private entities engaged in land conservation, one would further expect that each organization would apply separate goals and criteria to the selection and acquisition of its conservation portfolio. This set of circumstances raises an important question: what is the aggregate outcome of this land conservation process? Retrospective assessments provide a means of reviewing cumulative historical decisions and elucidating lessons for improving future conservation strategies. This study used GIS-based spatial analysis to examine the relationships of private and public conservation lands in Maine to a variety of landscape metrics in order to determine the degree to which these lands represent core ecological and socioeconomic values that are meaningful to a wide cross-section of citizens. Results revealed that the gains of past conservation efforts in Maine are counter-balanced to some extent by apparent gaps in the existing fabric of conservation holdings. Conservation lands capture a representative sample of diverse habitat, provide a large measure of protection for multiple conservation values and indicators, and offer an unusual mix of outdoor recreational opportunities for residents and visitors alike. Yet, the majority of parcels are relatively small and isolated, and thus do not provide contiguous habitat blocks that offset ongoing processes of landscape fragmentation. Furthermore, the majority of area associated with many of the ecological metrics examined in this report is located outside the boundaries of current conservation holdings. The under-represented metrics identified in this investigation can be viewed as potential targets for new strategic conservation initiatives.  相似文献   

17.
Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio’s Oak Openings region. Multiple regression models explained 37–77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.  相似文献   

18.
In nature reserves and habitat conservation areas, monitoring is required to determine if reserves are meeting their goals for preserving species, ecological communities, and ecosystems. Increasingly, reserves are established to protect multiple species and communities, each with their own conservation goals and objectives. As resources are always inadequate to monitor all components, criteria must be applied to prioritize both species and communities for monitoring and management. While methods for prioritizing species based on endangerment or risk have been established, approaches to prioritizing ecological communities for monitoring are not well developed, despite a long-standing emphasis on communities as target elements in reserve design. We established guidelines based on four criteria derived from basic principles of conservation and landscape ecology--extent, representativeness, fragmentation, and endangerment--to prioritize communities in the San Diego Multiple Species Conservation Plan (MSCP). The MSCP was one of the first multiple-species habitat conservation areas established in California, USA, and it has a complex spatial configuration because of the patterns of surrounding land use, which are largely urbanized. In this case study, high priority communities for monitoring include coastal sage scrub (high endangerment, underrepresented within the reserve relative to the region, and moderately fragmented), freshwater wetlands, and coastal habitats (both have high fragmentation, moderate endangerment and representativeness, and low areal extent). This framework may be useful to other conservation planners and land managers for prioritizing the most significant and at-risk communities for monitoring.  相似文献   

19.
Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the variable source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffers capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.  相似文献   

20.
Many of todays agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38° incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with 50% vegetation (considered optimal shorebird habitat), (2) wet with > 50% vegetation, (3) dry with 50% vegetation, and (4) dry with > 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while coverage of class 3 decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (about 30% coverage) in December and January, decreasing in March to approximately 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent. Also, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号