首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
The emission of NO was parameterized using empirical relationships with landuse type, fertilization rate and soil temperature. Eight landuse types (including four arable lands) were considered. Fertilization rates were distinguished for different regions and crops. A typical summer period of July in 1999 was chosen for detailed calculations. The total NO emission in the July is 141.1 Gg N, with 73.7% from arable lands and 22.0% from grasslands. The highest emission intensity can be more than 40 ng N m(-2) s(-1) in the heavily fertilized North China Plain, and the average of the whole lands is 6.5 ng N m(-2) s(-1). The annual emission was roughly estimated to be 657 Gg N, about 11.7% of the global total (5600 Gg N, reported by IPCC in 2000), and about 12.5% of the anthropogenic origin in China. Our results were compared with some earlier findings, and uncertainties were discussed.  相似文献   

2.
China has implemented a soil testing and fertilizer recommendation (STFR) program to reduce the over-usage of synthetic nitrogen (N) fertilizer on cereal crops since the late 1990 s. Using province scale datasets, we estimated an annual reduction rate of 2.5-5.1 kg N ha(-1) from 1998 to 2008 and improving grain yields, which were attributed to the balanced application of phosphate and potassium fertilization. Relative to the means for 1998-2000, the synthetic N fertilizer input and the corresponding N-induced N(2)O production in cereal crops were reduced by 22 ± 0.7 Tg N and 241 ± 4 Gg N(2)O-N in 2001-2008. Further investigation suggested that the N(2)O emission related to wheat and maize cultivation could be reduced by 32-43 Gg N(2)O-N per year in China (26%-41% of the emissions in 2008) if the STFR practice is implemented universally in the future.  相似文献   

3.
Abu-Qare AW  Duncan HJ 《Chemosphere》2002,48(9):965-974
Several methods were examined to minimize crops injury caused by herbicides. Thus increase their selectivity. A selective herbicide is one that controls weeds at rates that do not injure the crop. Herbicides are selective in a particular crop within certain limits imposed by the herbicide, the plant, the application rate, the method and time of application, and environment conditions. Herbicide safeners are compounds of diverse chemical families. They are applied with herbicides to protect crops against their injury. Using chemical safeners offer practical, efficient and simple method of improving herbicide selectivity. This method has been applied successfully in cereal crops such as maize, rice and sorghum, against pre-emergence thiocarbamate and chloroacetanilide herbicides. Some reports indicate promising results for the development of safeners for post-emergence herbicides in broadleaved crops. Various hypotheses were proposed explaining mechanisms of action of herbicide safeners: interference with uptake and translocation of the herbicide, alteration in herbicide metabolism, and competition at site of action of the herbicide. Even though progress was made in the development of herbicide safeners and in understanding their mechanisms of action, more research is needed to elucidate clearly how these chemicals act and why their activity is restricted to particular crops and herbicides.  相似文献   

4.
Wei Y  Liu Y 《Chemosphere》2005,59(9):1257-1265
Composted sewage sludge can be applied to cropland to supply nutrients and improve soil physical properties. However, farmers are much concerned about heavy metal accumulation in cropland and heavy metal availability for crops. A 3-year field study was carried out in this study to investigate the effects of sewage sludge compost (SSC) application on the heavy metal accumulation in cropland soil, rapeseed germination and plumelet development, and yields of barley and Chinese cabbage, compared with conventional mineral fertilization. In addition, the availability of heavy metals for barley and Chinese cabbage was examined. Experimental results showed that SSC application produced little effects on rapeseed germination and stimulated the rape plumelet development at lower application rates (<150 ton ha(-1)). Heavy metals (Cu and Zn) were accumulated in the topsoil (0-20 cm), the barley grains and the cabbage leaves. The yields of barley and Chinese cabbage generated positive response to the SSC application. Addition of mineral N-P-K fertilizers into SSC could further increase the crop yield. Considering the heavy metals accumulation in cropland soil and their availability for crops, SSC should be applied to cropland at a limited application rate (<150 ton ha(-1)).  相似文献   

5.
HCHs and DDTs were banned in 1983 in China; however, they are still remaining in various environmental media. Since endosulfan was introduced in China in 1994, it is widely used in agriculture. In this study, temporal and spatial uses of endosulfan, HCHs, and DDTs in Gansu province of China have been presented. It is estimated that the total usage is 701 tons for endosulfan between 1994 and 2007, 1,712 tons for HCHs between 1952 and 1983, and 462 tons for DDTs between 1951 and 1983, respectively. Endosulfan usage increased dramatically in 1998 due to its application on other crops except on cotton. The HCH and DDT usage displayed a rapid increase after 1972, reaching the peak in 1976 and in 1975, respectively; since then, they declined until being banned in 1983. The gridded usage inventories of these three kinds of organochlorine pesticides in Gansu province, with a 1/4° longitude by 1/6° latitude resolution, have been created by using different crops for endosulfan and the area of dry farmland for HCHs and DDTs as surrogate data. The most intensive use was in northwestern regions for endosulfan and southeastern regions for HCHs and DDTs in Gansu province.  相似文献   

6.

Purpose

This study evaluates manure and chemical fertilizer effects on micronutrient (Fe, Mn, Cu, and Zn) content and availability in crops.

Methods

Seven treatments were selected, including three conventional fertilization treatments (NP, horse manure (M), and NP plus M (NPM)), three corresponding double rate fertilization (N2P2, M2, and N2P2M2), and a CK. Soil samples were collected and separated into four aggregates by wet-sieving in September 2009. Corn samples were collected and analyzed simultaneously.

Results

Treatment N2P2 increased DTPA extractable Fe, Mn, and Cu in soil by 732%, 388%, and 42%, whereas M2 decreased the corresponding values by 26%, 22%, and 10%, respectively, compared to CK. DTPA extractable Zn in soil and Zn in corn grain were higher in the M and M2 treatments than in the other treatments, and DTPA Zn was significantly correlated with soil organic carbon (SOC) in large macroaggregate, microaggregate, and silt + clay fractions. The Mn concentrations in corn stalks and grain were significantly correlated with DTPA extractable Mn in bulk soil and microaggregates, and Zn in stalks were significantly correlated with DTPA Zn in bulk soil, microaggregates, and large macroaggregates.

Conclusions

Long-term application of horse manure could increase soil Zn availability and uptake by corn, possibly due to its activation by SOC. In contrast, chemical fertilizer application increased DTPA extractable Fe, Mn, and Cu in soil by reducing soil pH. Our results also suggest that Mn uptake by corn originated mainly in microaggregates, whereas Zn in crops was primarily sourced from large macroaggregates and microaggregates.  相似文献   

7.
Factors affecting ammonia volatilisation from a rice-wheat rotation system   总被引:6,自引:0,他引:6  
Tian G  Cai Z  Cao J  Li X 《Chemosphere》2001,42(2):123-129
Some of the major factors influencing ammonia volatilisation in a rice wheat rotation system were studied. A continuous airflow enclosure method was used to measure NH3 volatilisation in a field experiment at an agricultural college in Jiangsu Province. The five treatments comprised application rates of 0, 100, 200 or 300 kg N ha(-1) as urea, per growing season with rice straw amendment when wheat was sown, and 200 kg N ha(-1) without rice straw amendment. There were three replicates in a randomised block design. Ammonia volatilisation was measured immediately after urea application in the three consecutive years 1995 to 1997. The results show that N losses through NH3 volatilisation accounted for 4-19% of N applied during the wheat growing season and for 5-11% during the rice growing season. Ammonia volatilisation was affected significantly by soil moisture and temperature before and after fertiliser application during the wheat growing season. The ratio of volatilised NH3-N to applied N after urea application during the rice growing season was as follows: top-dressing at the onset of tillering > top-dressing at the start of the booting stage > basal fertilization. The results also show that the amount of N lost through NH3 volatilisation increased with increasing N application rate, but the ratio to applied N was not affected significantly by N application rate. Amendment with rice straw had no significant effect on NH3 volatilisation.  相似文献   

8.
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m3?ha?1 and accounted for 1.91, 1.98, and 1.85 % of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg?ha?1. Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34 %, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg?L?1, with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg?L?1. The loss of NO3 ?–N was greater than the loss of NH4 +–N. The total loss of dissolved organic nitrogen (DON) reached 23–41 % of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.  相似文献   

9.
Spartina alterniflora exhibits great invading potential in the coastal marsh ecosystems. Also, nitrogen (N) deposition shows an apparent increase in the east of China. To evaluate CH4 emissions in the coastal marsh as affected by the invasion of S. alterniflora and N deposition, we measured CH4 emission from brackish marsh mesocosms vegetated with S. alterniflora and a native plant, Suaeda salsa, and fertilized with exogenous N at the rates of 0 and 2.7 g N m?2, respectively. Dissolved porewater CH4 concentration and redox potentials in soils as well as aboveground biomass and stem density of plants were also monitored. The averaged rate of CH4 emission during the growing season in the S. alterniflora and S. salsa mesocosms without N application was 0.88 and 0.54 mg CH4 m?2 h?1, respectively, suggesting that S. alterniflora plants significantly increased CH4 emission mainly because of higher plant biomass rather than stem density compared to S. salsa, which delivered more substrates to the soil for methanogenesis. Exogenous N input dramatically stimulated CH4 emission by 71.7% in the S. alterniflora mesocosm. This increase was attributable to enhancement in biomass and particularly stem density of S. alterniflora driven by N application, which transported greater photosynthesis products than oxygen into soils for CH4 production and provided more pathways for CH4 emission. In contrast, there was no significant effect of N fertilization on CH4 emission in the S. salsa mesocosm. Although N fertilization significantly stimulated CH4 production by increasing S. salsa biomass, no significant increase in stem density was observed. This fact, along with the low gas transport capacity of S. salsa, failed to efficiently transport CH4 from wetlands into the atmosphere. Thus we argue that the stimulatory or inhibitory effect of N fertilization on CH4 emission from wetlands might depend on the gas transport capacity of plants and their relative contribution to substrates for CH4 production and oxygen for CH4 oxidation in soil.  相似文献   

10.
A laboratory experiment was conducted to study effects of urea fertilizer on the chemical composition of soil solutions over time, and to determine Al toxicity as a function of rates of urea application. The experiment revealed that addition of urea fertilizer to soils caused drastic changes in soil pH during the hydrolysis and nitrification stages of urea transformation in the experiment. These pH changes, depending on the N rate of urea application and time courses, had variable effects on soil exchangeable Al, extracted with artificial solutions containing 1 mol l(-1) KCl. The Al mobilization rate could be resolved into two phases: A declining phase for Al was attributed to the urea-induced hydrolysis while a second rising phase was dependent with the nitrification of added N fertilizer. The decreases in exchangeable Al reached the greatest in 4-7 days after fertilization, consistent with soil pH increase. Decreased Al availability had been observed as a consequence of increasing urea addition and soil pH when using Root elongation of maize seedlings as the estimators. Results from the present study demonstrate that urea fertilizer to the surface of soils may lead to a temporary immobilization of Al and, therefore, alleviated Al toxicity to plant seedlings.  相似文献   

11.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N‐viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co‐compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot? 1 for each amendment (equivalent to 50 t ha? 1 of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3‐N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3‐N and inorganic P concentration significantly compared with the non‐legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3 ? could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co‐compost and biosolids, but decreased by coal ash and N‐viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3‐N to increase by about 7 fold, and that of inorganic P by about 23% over the non‐legume. Regarding the metals, biosolids, N‐viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co‐compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   

12.
The effects of manure-application mode, rate to soil, and rainfall characteristics on the quality of agricultural runoff water have been assessed by means of the algal-growth-potential test (AGPT) and chemical analyses. This study used two modes of manure application (i.e. surface mode and incorporation mode), three manure-application rates (0, 150, 300 kg N ha(-1)), and two rainfall intensities and times (i.e. 11 mm h(-1) for 142 min and 22 mm h(-1) for 71 min). The effects of the dilution of runoff water on algal growth were also examined. The algal yields obtained with runoff from soil with the incorporated manure mode are similar to those from soil without manure application and are lower than those with the surface mode of manure application. A higher manure-application rate increases the load of nutrients in the runoff and subsequently the algal yield. The dilution of runoff water can stimulate or limit the algal growth, depending on the concentration of toxicants, N (nitrogen) and P (phosphorus) from runoff and in the aquatic diluting medium. A lower rainfall intensity plus a longer rainfall time increases algal productivity. This study showed that N is the limiting factor to algal growth at low dilution but that, at high dilution or with the incorporation mode of manure application, P becomes the limiting factor to algal growth.  相似文献   

13.
To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.  相似文献   

14.
Nitrous oxide (N2O) emissions from a typical greenhouse vegetable system in Northern China were measured from February 2004 to January 2006 using a close chamber method. Four nitrogen management levels (NN, MN, CN, and SN) were used. N2O emissions occurred intermittently in the growing season, strongly correlating with N fertilization and irrigation. No peak emissions were observed after fertilization in the late Autumn season due to low soil temperature. 57-94% of the seasonal N2O emissions came from the initial growth stage, corresponding to the rewetting process in the soil. The annual N2O emissions ranged from 2.6 to 8.8 kg N ha−1 yr−1, accounting for 0.27-0.30% of the annual nitrogen input. Compared with conventional N management, site-specific N management reduced N fertilization rate by 69% in 2004 and by 76% in 2005, and consequently reduced N2O emissions by 51% in 2004 and 27% in 2005, respectively.  相似文献   

15.
Singh KP  Mohan D  Sinha S  Dalwani R 《Chemosphere》2004,55(2):227-255
Studies were undertaken to assess the impact of wastewater/sludge disposal (metals and pesticides) from sewage treatment plants (STPs) in Jajmau, Kanpur (5 MLD) and Dinapur, Varanasi (80 MLD), on health, agriculture and environmental quality in the receiving/application areas around Kanpur and Varanasi in Uttar Pradesh, India. The raw, treated and mixed treated urban wastewater samples were collected from the inlet and outlet points of the plants during peak (morning and evening) and non-peak (noon) hours. The impact of the treated wastewater toxicants (metals and pesticides) on the environmental quality of the disposal area was assessed in terms of their levels in different media samples viz., water, soil, crops, vegetation, and food grains. The data generated show elevated levels of metals and pesticides in all the environmental media, suggesting a definite adverse impact on the environmental quality of the disposal area. The critical levels of the heavy metals in the soil for agricultural crops are found to be much higher than those observed in the study areas receiving no effluents. The sludge from the STPs has both positive and negative impacts on agriculture as it is loaded with high levels of toxic heavy metals and pesticides, but also enriched with several useful ingredients such as N, P, and K providing fertilizer values. The sludge studied had cadmium, chromium and nickel levels above tolerable levels as prescribed for agricultural and lands application. Bio-monitoring of the metals and pesticides levels in the human blood and urine of the different population groups under study areas was undertaken. All the different approaches indicated a considerable risk and impact of heavy metals and pesticides on human health in the exposed areas receiving the wastewater from the STPs.  相似文献   

16.
Residues of five different pesticides applied to alfalfa seed crops were determined in the harvested seeds and in sprouts grown from these seeds. Although seeds are usually used for future production of alfalfa plants, some of these seeds may be sprouted for human food consumption. The pesticides studied--aldicarb (Temik), chlorothalonil (Bravo), chlorpyrifos (Lorsban), methamidophos (Monitor) and propargite (Comite)--were applied at a normal usage rate and at two to three times that rate. Residues on the seeds and sprouts, if any, were insignificant at rates of application.  相似文献   

17.
The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha(-1) yr(-1), and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in some watersheds east of the Continental Divide, which reflects low biomass and a short growing season relative to the timing and N load in deposition. Regional upward temporal trends in surface water NO(3)(-) concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future.  相似文献   

18.
In China, vegetable croplands are characterized by intensive fertilization and cultivation, which produce significant nitrogenous gases to the atmosphere. In this study, nitric oxides (NOX) and nitrous oxide (N2O) emissions from the croplands cultivated with three typical vegetables had been measured in Yangtze River Delta of China from September 2 to December 16, 2006. The NO fluxes varied in the ranges of 1.6–182.4, 1.4–2901 and 0.5–487 ng Nm?2 s?1 with averages of 33.8 ± 44.2, 360 ± 590 and 76 ± 112 (mean ± SD) ngNm?2 s?1 for cabbage, garlic, and radish fields (n = 88), respectively. N2O fluxes from the three vegetable fields were found to occur in pulses and significantly promoted by tillage with average values of 5.8, 8.8, and 4.3 ng Nm?2 h?1 for cabbage, garlic, and radish crops, respectively. Influence of vegetables canopy on the NO emission was investigated and quantified. It was found that on cloudy days the canopy can only shield NO emission from croplands soil while on sunny days it cannot only prevent NO emission but also assimilate NO through the open leaves stomas. Multiple linear regression analysis indicated that soil temperature was the most important factor in controlling NO emission, followed by fertilizer amount and gravimetric soil water content. About 1.2%, 11.56% and 2.56% of applied fertilizers N were emitted as NO–N and N2O–N from the cabbage, garlic and radish plots, respectively.  相似文献   

19.
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3 were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops.  相似文献   

20.
Arsenic (As) uptake by Rhapanus sativus L. (radish), cv. Nueva Orleans, growing in soil-less culture conditions was studied in relation to the chemical form and concentration of As. A 4 x 3 factorial experiment was conducted with treatments consisting of four As chemical forms [As(III), As(V), MMAA, DMAA] and three As concentrations (1.0, 2.0, and 5.0 mg As L-1). None of the As treatments were clearly phytotoxic to this radish cultivar. Arsenic phytoavailability was primarily determined by the As chemical form present in the nutrient solution and followed the trend DMAA < or = As(V) < or = As(III) < MMAA. Root and shoot As concentrations significantly increased with increasing As application rates. Monomethyl arsonic acid treatments caused the highest As accumulation in both roots and shoots, and this organic arsenical showed a higher uptake rate than the other As compounds. Inner root As concentrations were, in general, within the normal range for As contents in food crops but root skin As levels were close or above the maximum threshold set for As content in edible fruit, crops and vegetables. The statement that toxicity limits plant As uptake to safe levels was not confirmed in our study. If radish plants are exposed to a large pulse of As, as growth on contaminated nutrient solutions, they may accumulate residues which are unacceptable for animal and human consumption without exhibiting symptoms of phytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号