首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Carbon (C) input from tree prunings and crop residues help to maintain the soil organic C pool in tropical agroforestry systems. This study quantified the C stock of tree roots and C input from tree prunings and crop residues in 19-, 10- and 4-year-old Erythrina poeppigiana and Gliricidia sepium alley cropping systems in Costa Rica. The 19-year-old alley cropping system was studied at two fertilizer levels (tree prunings only [−N], and tree prunings plus chicken manure [+N]), and was compared to a sole crop. The 10- and 4-year-old systems were also studied at two fertilizer levels (tree prunings only [−A], and tree prunings plus Arachis pintoi as a groundcover [+A]), and compared to a sole crop. In the 19-year-old system C input from G. sepium was significantly greater (P < 0.05) compared to E. peoppigiana, but for both tree species there was no significant difference between +N and −N treatments. For the 10- and 4-year-old systems, E. poeppigiana had a significantly higher (P < 0.05) C input from prunings compared to G. sepium, and the presence of A. pintoi increased pruning biomass productivity significantly in these systems. Tree roots of 10- (4527 kg C ha−1) and 4-year-old (3667 kg C ha−1) E. poeppigiana represented 16 and 28% of the total C allocation. Carbon input from maize (Zea mays L.) and bean (Phaseolus vulgaris L.) residues were not significantly different (P < 0.05) between alley crops and sole crops in the 19-year-old system per unit of cropped land. In this system, +N treatments had a significantly greater (P < 0.05) C input from bean residue than in −N treatments, but no such trend was observed for maize residues. Carbon input from maize and bean residues were significantly greater (P < 0.05) in alley crops than the sole crops, but not significantly different (P < 0.05) between +A and −A treatments in the younger system. The greatest input of organic material occurred in the 19-year-old alley crop followed by the 10- and 4-year-old alley crops. This additional input of organic material in alley crops, mostly derived from tree prunings, will help to maintain or increase the level of the soil organic carbon pool.  相似文献   

2.
RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976–2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang’a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha−1), farmyard manure (FYM—5 and 10 t ha−1) and plant residue treatments, in a variety of combinations. The Machang’a experiment involved a fertiliser (51 kg N ha−1) and a FYM (0, 5 and 10 t ha−1) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang’a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang’a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops.  相似文献   

3.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

4.
Estimates of regional greenhouse gas emissions from agricultural systems are needed to evaluate possible mitigation strategies with respect to environmental effectiveness and economic feasibility. Therefore, in this study, we used the GIS-coupled economic-ecosystem model EFEM–DNDC to assess disaggregated regional greenhouse gas (GHG) emissions from typical livestock and crop production systems in the federal state of Baden-Württemberg, Southwest Germany. EFEM is an economic farm production model based on linear programming of typical agricultural production systems and simulates all relevant farm management processes and GHG emissions. DNDC is a process-oriented ecosystem model that describes the complete biogeochemical C and N cycle of agricultural soils, including all trace gases.Direct soil emissions were mainly related to N2O, whereas CH4 uptake had marginal influence (net soil C uptake or release was not considered). The simulated N2O emissions appeared to be highly correlated to N fertilizer application (R2 = 0.79). The emission factor for Baden-Württemberg was 0.97% of the applied N after excluding background emissions.Analysis of the production systems showed that total GHG emissions from crop based production systems were considerably lower (2.6–3.4 Mg CO2 eq ha−1) than from livestock based systems (5.2–5.3 Mg CO2 eq ha−1). Average production system GHG emissions for Baden-Württemberg were 4.5 Mg CO2 eq ha−1. Of the total 38% were derived from N2O (direct and indirect soil emissions, and manure storage), 40% were from CH4 (enteric fermentation and manure storage), and 22% were from CO2 (mainly fertilizer production, gasoline, heating, and additional feed). The stocking rate was highly correlated (R2 = 0.85) to the total production system GHG emissions and appears to be a useful indicator of regional emission levels.  相似文献   

5.
Agroforestry is recognized as a strategy for soil carbon sequestration (SCS) under the afforestation/reforestation activities, but our understanding of soil carbon (C) dynamics under agroforestry systems (AFS) is not adequate. Although some SCS estimates are available, many of them lack scientific rigor. Several interrelated and site-specific factors ranging from agroecological conditions to system management practices influence the rate and extent of SCS under AFS, so that generalizations tend to become unrealistic. Furthermore, widely and easily adoptable methodologies are not available for estimating the SCS potential under different conditions. In spite of these, there is an increasing demand for developing “best-bet estimates” based on the current level of knowledge and experience. This document presents an attempt in that direction. The appraisal validates the conjecture that AFS can contribute to SCS, and presents indicative ranges of SCS under different AFS in the major agroecological regions of the tropics. The suggested values range from 5 to 10 kg C ha?1 in about 25 years in extensive tree-intercropping systems of arid and semiarid lands to 100–250 kg C ha?1 in about 10 years in species-intensive multistrata shaded perennial systems and homegardens of humid tropics.  相似文献   

6.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

7.
The largest areas of acid sulphate (AS) soils in Europe are located in Finland, where 67,000–130,000 ha of AS soils are in agricultural use. In addition to their acidifying effects on waters, AS soils might be a significant source of greenhouse gases. In this pilot research, carbon and nitrogen content and microbial activity were studied in an AS and a non-AS soil. Large carbon and nitrogen stocks (110 Mg Corg ha?1 and 15 Mg Ntot ha?1) as well as high substrate induced respiration (33 μg CO2–C g?1h?1) were found in the C horizons of the AS soil but not in the non-AS soil. High microbial activity in these horizons of the AS soil was further confirmed by the measurement of dehydrogenase activity, basal respiration, the numbers of culturable bacterial cells, and the ratio of culturable to total numbers of cells. Still, the denitrifying enzyme activity was very low in the anaerobic horizons of the AS soil, indicating the prevalence of microbes other than denitrifiers. We suspect that the microbial community originated with the genesis of AS soil and has been supported by the large stocks of accumulated carbon and mineral nitrogen in the C horizons. If these permanently water-saturated subsoils are exposed to oxygen and their microbial activity consequently increases, large carbon and nitrogen stocks are likely to be mobilised, resulting in increased emission of greenhouse gases. Additional studies of boreal AS soils are needed to assess their potential contribution to increases in greenhouse gas fluxes at the local, regional, and global scales.  相似文献   

8.
While Carbon (C) sequestration on farmlands may contribute to mitigate CO2 concentrations in the atmosphere, greater agro-biodiversity may ensure longer term stability of C storage in fluctuating environments. This study was conducted in the highlands of western Kenya, a region with high potential for agroforestry, with the objectives of assessing current biodiversity and aboveground C stocks in perennial vegetation growing on farmland, and estimating C sequestration potential in aboveground C pools. Allometric models were developed to estimate aboveground biomass of trees and hedgerows, and an inventory of perennial vegetation was conducted in 35 farms in Vihiga and Siaya districts. Values of the Shannon index (H), used to evaluate biodiversity, ranged from 0.01 in woodlots through 0.4–0.6 in food crop plots, to 1.3–1.6 in homegardens. Eucalyptus saligna was the most frequent tree species found as individual trees (20%), in windrows (47%), and in woodlots (99%) in Vihiga and the most frequent in woodlots (96%) in Siaya. Trees represented the most important C pool in aboveground biomass of perennial plants growing on-farm, contributing to 81 and 55% of total aboveground farm C in Vihiga and Siaya, respectively, followed by hedgerows (13 and 39%, respectively) and permanent crop stands (5 and 6%, respectively). Most of the tree C was located in woodlots in Vihiga (61%) and in individual trees growing in or around food crop plots in Siaya (57%). The homegardens represented the second C pool in importance, with 25 and 33% of C stocks in Vihiga and Siaya, respectively. Considering the mean total aboveground C stocks observed, and taking the average farm sizes of Vihiga (0.6 ha) and Siaya (1.4 ha), an average farm would store 6.5 ± 0.1 Mg C farm?1 in Vihiga and 12.4 ± 0.1 Mg C farm?1 in Siaya. At both sites, the C sequestration potential in perennial aboveground biomass was estimated at ca. 16 Mg C ha?1. With the current market price for carbon, the implementation of Clean Development Mechanism Afforestation/Reforestation (CDM A/R) projects seems unfeasible, due to the large number of small farms (between 140 and 300) necessary to achieve a critical land area able to compensate the concomitant minimum transaction costs. Higher financial compensation for C sequestration projects that encourage biodiversity would allow clearer win–win scenarios for smallholder farmers. Thus, a better valuation of ecosystem services should encourage C sequestration together with on-farm biodiversity when promoting CDM A/R projects.  相似文献   

9.
Agriculture is an important contributor to global emissions of greenhouse gases (GHG), in particular for methane (CH4) and nitrous oxide (N2O). Emissions from farms with a stock of ruminant animals are particularly high due to CH4 emissions from enteric fermentation and manure handling, and due to the intensive nitrogen (N) cycle on such farms leading to direct and indirect N2O emissions. The whole-farm model, FarmGHG, was designed to quantify the flows of carbon (C) and nitrogen (N) on dairy farms. The aim of the model was to allow quantification of effects of management practices and mitigation options on GHG emissions. The model provides assessments of emissions from both the production unit and the pre-chains. However, the model does not quantify changes in soil C storage.Model dairy farms were defined within five European agro-ecological zones for both organic and conventional systems. The model farms were all defined to have the same utilised agricultural area (50 ha). Cows on conventional and organic model farms were defined to achieve the same milk yield, so the basic difference between conventional and organic farms was expressed in the livestock density. The organic farms were defined to be 100% self-sufficient with respect to feed. The conventional farms, on the other hand, import concentrates as supplementary feed and their livestock density was defined to be 75% higher than the organic farm density. Regional differences between farms were expressed in the milk yield, the crop rotations, and the cow housing system and manure management method most common to each region.The model results showed that the emissions at farm level could be related to either the farm N surplus or the farm N efficiency. The farm N surplus appeared to be a good proxy for GHG emissions per unit of land area. The GHG emissions increased from 3.0 Mg CO2-eq ha−1 year−1 at a N surplus of 56 kg N ha−1 year−1 to 15.9 Mg CO2-eq ha−1 year−1 at a N surplus of 319 kg N ha−1 year−1. The farm N surplus can relatively easily be determined on practical farms from the farm records of imports and exports and the composition of the crop rotation. The GHG emissions per product unit (milk or metabolic energy) were quite closely related to the farm N efficiency, and a doubling of the N efficiency from 12.5 to 25% reduced the emissions per product unit by ca. 50%. The farm N efficiency may therefore be used as a proxy for comparing the efficiencies of farms with respect to supplying products with a low GHG emission.  相似文献   

10.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

11.
Excessive loss of fine-grained sediment to rivers is widely recognised as a global environmental problem. To address this issue, policy teams and catchment managers require an estimate of the ‘gap’ requiring remediation, as represented by the excess above ‘background’ losses. Accordingly, recent work has estimated the exceedance of modern ‘background’ sediment delivery to rivers at national scale across England and Wales due to (i) current agricultural land cover, cropping and stocking, and (ii) current land use corrected for the uptake of on-farm mitigation measures. This sectoral focus recognises that, nationally, agriculture has been identified as the principal source of fine sediment loss to the aquatic environment. Two estimates of modern ‘background’ sediment loss, based on paleolimnological evidence, were used in the analysis; the target modern ‘background’ (TMBSDR) and maximum modern ‘background’ (MMBSDR) sediment delivery to rivers. For individual (n = 4485) non-coastal water bodies, the sediment ‘gap’ in excess of TMBSDR and MMBSDR, due to current land cover, cropping and stocking, was estimated to range up to 1368 kg ha−1 yr−1 (median 61 kg ha−1 yr−1) and 1321 kg ha−1 yr−1 (median 19 kg ha−1 yr−1), respectively. The respective ranges in conjunction with current land cover, cropping and stocking but corrected for the potential impact of on-farm sediment mitigation measures were up to 1315 kg ha−1 yr−1 (median 50 kg ha−1 yr−1) and 1269 kg ha−1 yr−1 (median 8 kg ha−1 yr−1). Multiplication of the estimates of excess sediment loss corrected for current measure uptake, above TMBSDR and MMBSDR, with estimated maximum unit damage costs for the detrimental impacts of sediment pollution on ecosystem goods and services, suggested respective water body ranges up to 495 £ ha−1 yr−1 and 478 £ ha−1 yr−1. Nationally, the total loss of sediment in excess of TMBSDR was estimated at 1,389,818 t yr−1 equating to maximum environmental damage costs of £523 M yr−1, due to current structural land use, compared to 1,225,440 t yr−1 equating to maximum damage costs of £462 M yr−1 due the uptake of on-farm sediment control measures. The corresponding total loss of sediment in excess of MMBSDR was estimated at 1,038,764 t yr−1 equating to maximum damage costs of £462 M yr−1, compared with 890,146 t yr−1 and £335 M yr−1 correcting excess agricultural sediment loss for current implementation of abatement measures supported by policy instruments. This work suggests that the current uptake of sediment control measures on farms across England and Wales is delivering limited benefits in terms of reducing loadings to rivers and associated environmental damage costs.  相似文献   

12.
To reduce the environmental burden of agriculture, suitable methods to comprehend and assess the impact on natural resources are needed. One of the methods considered is the life cycle assessment (LCA) method, which was used to assess the environmental impacts of 18 grassland farms in three different farming intensities — intensive, extensified, and organic — in the Allgäu region in southern Germany. Extensified and organic compared with intensive farms could reduce negative effects in the abiotic impact categories of energy use, global warming potential (GWP) and ground water mainly by renouncing mineral nitrogen fertilizer. Energy consumption of intensive farms was 19.1 GJ ha−1 and 2.7 GJ t−1 milk, of extensified and organic farms 8.7 and 5.9 GJ ha−1 along with 1.3 and 1.2 GJ t−1 milk, respectively. Global warming potential was 9.4, 7.0 and 6.3 CO2-equivalents ha−1 and 1.3, 1.0 and 1.3 CO2-equivalents t−1 milk for the intensive, extensified and organic farms, respectively. Acidification calculated in SO2-equivalents was high, but the extensified (119 kg SO2 ha−1) and the organic farms (107 kg SO2 ha−1) emit a lower amount compared with the intensive farms (136 kg SO2 ha−1). Eutrophication potential computed in PO4-equivalents was higher for intensive (54.2 kg PO4 ha−1) compared with extensified (31.2 kg PO4 ha−1) and organic farms (13.5 kg PO4 ha−1). Farmgate balances for N (80.1, 31.4 and 31.1 kg ha−1) and P (5.3, 4.5 and −2.3 kg ha−1) for intensive, extensified and organic farms, respectively, indicate the different impacts on ground and surface water quality. Analysing the impact categories biodiversity, landscape image and animal husbandry, organic farms had clear advantages in the indicators number of grassland species, grazing cattle, layout of farmstead and herd management, but indices in these categories showed a wide range and are partly independent of the farming system.  相似文献   

13.
Nutrient balances aggregated at the continental, national, or regional levels for African farming systems are usually reported as strongly negative. At the landscape or farm scale, the most commonly reported variability is the gradient of decreasing soil fertility from intensively managed “home” fields to more extensively managed “bush” fields. Case study evidence from an agro-pastoral community of southern Mali’s cotton zone showed that “home” and “bush” fields differed significantly in nutrient balances and soil fertility status but that inter-household differences related to household practice and social factors were even more important.Plot and household-level soil nutrient balances were calculated in 1996–1997 from participatory exercises such as resource flow mapping, participant observation, and soil sampling. The overall community-level nutrient balances averaged −9.2 kg N ha−1, +0.8 kg P ha−1, and −3.4 kg K ha−1, with significant inter-household variation. Soil analysis confirmed significant variation in soil nutrient status at both the landscape and plot levels. Comparing the scale and patterns of input use inequality using Gini coefficients showed the range of coefficients attributable to household behaviours matched or surpassed those attributable to distance factors alone. Input use intensity declined with increasing distance from nutrient sources but field level nutrient balances were better explained by household practice than by distance. Systemic differences in household asset ownership, use, and resource allocation behaviour suggested that much of the diversity seen in the nutrient balances and soil analyses was due to persistent inter-household inequality and the consequent exchanges of agro-pastoral resources. Inter-household negotiations for inputs (such as exchanges of manure and carts) and household-level decisions about input allocation created, exploited, and reinforced a mosaic of soil fertility “hotspots” surrounded by less fertile and less intensively managed patches.  相似文献   

14.
There is an increasing world wide demand for energy crops and animal manures for biogas production. To meet these demands, this research project aimed at optimising anaerobic digestion of maize and dairy cattle manures. Methane production was measured for 60 days in 1 l eudiometer batch digesters at 38 °C. Manure received from dairy cows with medium milk yield that were fed a well balanced diet produced the highest specific methane yield of 166.3 Nl CH4 kg VS−1. Thirteen early to late ripening maize varieties were grown on several locations in Austria. Late ripening varieties produced more biomass than medium or early ripening varieties. On fertile locations in Austria more than 30 Mg VS ha−1 can be produced. The methane yield declined as the crop approaches full ripeness. With late ripening maize varieties, yields ranged between 312 and 365 Nl CH4 kg VS−1 (milk ripeness) and 268–286 Nl CH4 kg VS−1 (full ripeness). Silaging increased the methane yield by about 25% compared to green, non-conserved maize. Maize (Zea mays L.) is optimally harvested, when the product from specific methane yield and VS yield per hectare reaches a maximum. With early to medium ripening varieties (FAO 240–390), the optimum harvesting time is at the “end of wax ripeness”. Late ripening varieties (FAO ca. 600) may be harvested later, towards “full ripeness”. Maximum methane yield per hectare from late ripening maize varieties ranged between 7100 and 9000 Nm3 CH4 ha−1. Early and medium ripening varieties yielded 5300–8500 Nm3 CH4 ha−1 when grown in favourable regions. The highest methane yield per hectare was achieved from digestion of whole maize crops. Digestion of corns only or of corn cob mix resulted in a reduction in methane yield per hectare of 70 and 43%, respectively. From the digestion experiments a multiple linear regression equation, the Methane Energy Value Model, was derived that estimates methane production from the composition of maize. It is a helpful tool to optimise biogas production from energy crops. The Methane Energy Value Model requires further validation and refinement.  相似文献   

15.
Increasing dependence on off-farm inputs including, fertilizers, pesticides and energy for food and fiber production in the United States and elsewhere is of questionable sustainability resulting in environmental degradation and human health risks. The organic (no synthetic fertilizer or pesticide use), and low-input (reduced amount of synthetic fertilizer and pesticide use), farming systems are considered to be an alternative to conventional farming systems, to enhance agricultural sustainability and environmental quality. Soil N availability and leaching potential, crop yields and weeds are important factors related to agricultural sustainability and environmental quality, yet information on long-term farming system effects on these factors, especially in the organic and low-input farming systems is limited. Four farming systems: organic, low-input, conventional (synthetic fertilizer and pesticides applied at recommended rates) 4-year rotation (conv-4) and a conventional 2-year rotation (conv-2) were evaluated for soil mineral N, potentially mineralizable N (PMN), crop yields and weed biomass in irrigated processing tomatoes (Lycopersicon esculentum L.) and corn (Zea mays L.) from 1994 to 1998 in California’s Sacramento Valley. Soil mineral N levels during the cropping season varied by crop, farming system, and the amount and source of N fertilization. The organic and low-input systems showed 112 and 36% greater PMN pools than the conventional systems, respectively. However, N mineralization rates of the conventional systems were 100% greater than in the organic and 28% greater than in the low-input system. Average tomato fruit yield for the 5-year period (1994–1998) was 71.0 Mg ha−1 and average corn grain yield was 11.6 Mg ha−1 and both were not significantly different among farming systems. The organic system had a greater aboveground weed biomass at harvest compared to other systems. The lower potential risk of N leaching from lower N mineralization rates in the organic and low-input farming systems appear to improve agricultural sustainability and environmental quality while maintaining similar crop yields.  相似文献   

16.
Reducing phosphorus (P) in dairy diets may result in different types of manure with different chemical composition. Application of these manures to soils may affect the soil P solubility and lead to different environmental consequences. A laboratory incubation study determined the impact of 40 dairy manures on P dynamics in two soil types, Mattapex silt loam (Aquic Hapludult) and Kalmia sandy loam (Typic Hapludult). The manures were fecal samples of lactating cows, collected from commercial dairy farms located in Northeastern and Mid-Atlantic United States, with a wide range of dietary P concentrations (from 2.9 to 5.8 g P kg−1 feed dry matter, DM). Dried and ground fecal samples were mixed with surface horizon (0–15 cm) of soils at 150 kg P ha−1 and the mixtures were incubated at 25 °C for 21 days. At the end of incubation, water soluble P (WS-P) and Mehlich-3 P (M3-P) in the soil–manure mixtures were substantially higher than the control (soil alone) but were lower than the soils receiving fertilizer KH2PO4 at 150 kg P ha−1. Similarly, the relative extractability of P in soils amended with low- and high-P manures was always lower (<93%) than KH2PO4 suggesting that fertilizer P is more effective at increasing soil solution P in the short-term. Concentrations of WS-P or M3-P in soil–manure mixtures did not differ regardless of the source of manure (i.e. different farms and different diets). This suggests that when the same amount of P is added to soils through manure applications, the solubility or bioavailability of P in soils will be the same. However, P concentrations in feces correlate significantly with that in diets (r = 0.82**); and when the manures were grouped into high-P diets (averaging 5.1 g P kg−1) versus low-P diets (3.6 g P kg−1), manure P was 40% greater in the high-P group (10.6 g kg−1 DM) than the low-P group (7.6 g kg−1 DM). Thus, lowering excess P in diets would reduce P excretion in manures, P accumulation in soils, improve P balance on farms, require less area for land disposal, and decrease potential for P loss to waters.  相似文献   

17.
Effects of agricultural land-use and land-use change on soil organic carbon (SOC) pools play an important role in the mitigation of the global greenhouse effect. To estimate these effects, baseline SOC data for individual regions or countries are needed. The aim of this study was to quantify current SOC stocks in Swiss agricultural soils, to identify meaningful predictors for SOC, and to estimate historical SOC losses. SOC stocks in mineral soils were estimated from combined georeferenced data for land-use, topography, and profile data (n=544) from soil surveys. Mean SOC density in the layer 0–20 cm ranged between 40.6±8.9 t ha−1 (±95% confidence interval (CI)) for arable land and 50.7±12.2 t ha−1 for favourable permanent grassland, and in the layer 0–100 cm from 62.9±15.2 t ha−1 for unfavourable grassland to 117.4±29.8 t ha−1 for temporary grasslands (leys). SOC stocks in organic soils were quantified separately for intact and cultivated peatlands using data from peatland inventories and current SOC densities calculated from average peat decay rates. Organic soils account for less than 3% of the total area but store about 28% (47.2±7.3 Mt) of the total SOC stock of 170±17 Mt. Land-use type, clay content, and altitude (serving as a climate proxy for grassland soils at higher altitudes) were identified as main SOC predictors in mineral soils. Clay content explained up to 44% of the variability in SOC concentrations in the fine earth of arable soils, but was not significantly related to SOC in grassland soils at higher altitudes. SOC concentration under permanent grassland increases linearly with altitude, but because soil depth and stone content limit carbon storage in alpine grassland soils, no relationship was found between altitude and SOC stock. A preliminary estimate suggested that about 16% of the national SOC stock has been lost historically due to peatland cultivation, urbanisation, and deforestation. It seems unlikely that future changes in agricultural practices could compensate for this historical SOC loss in Swiss agricultural soils.  相似文献   

18.
The sugarcane (Sacharum officinarum) monocropping has had a great socio-economic and environmental impact in Brazil, and agroforestry (AFs) has been considered as an alternative to its sustainable production. However, there is a lack of field experiments results under such conditions. Therefore, yield measurement across transect in the tree–crop interface in on-farm conditions, as well as the use of simulation models, may allow the evaluation of biophysical interactions between trees and crops and system productivity. In this work, plant growth and yield in a sugarcane–eucalyptus (Eucalyptus grandis) on-farm interface were evaluated. The experimental site had a Chromic Ferralsol soil and it is located in a sub-tropical region of Brazil. Availability of solar radiation for the crop along the transect was estimated and its effect on sugarcane dry matter production was evaluated. Using such relations, two sugarcane–eucalyptus AFs cycles were simulated to estimate system productivity. The field results showed that the trees presented a higher growth in the AFs, while the crop growth and yield were inversely proportional to their distance from the trees. The eucalyptus wood volume increased from 0.15 to 0.29 m3 per tree from monocropping to AFs. The sugarcane dry matter decreased from 35.1 to 8.70 t ha−1 from the furthest to the closest position from tree along the transect. Simulations suggested that light was the main cause of the crop yield reduction, but the importance of competition for water and nutrients increased inversely according to tree distance. However, both simulated AFs provided land equivalent ratio (LER) similar to one (1). Field measurements and simulations indicate that agroforestry systems are a sound alternative for sugarcane cultivation in the studied region. Combination of on-farm studies and simulation models provided conditions to understand tree–crop interactions and to extrapolate field results so that the performance of a new system could be estimated.  相似文献   

19.
In many peri-urban areas of Southeast Asia, land use has been transformed from rice-based to more profitable vegetable-based systems in order to meet the increasing market demand. The major management related flows of nitrogen (N), phosphorus (P), potassium (K), copper (Cu) and zinc (Zn) were quantified over a 1-year period for intensive small-scale aquatic and terrestrial vegetable systems situated in two peri-urban areas of Hanoi City, Vietnam. The two areas have different sources of irrigation water; wastewater from Hanoi City and water from the Red River upstream of Hanoi. The first nutrient balances for this region and farming systems are presented. The main sources of individual elements were quantified and the nutrient use efficiency estimated. The environmental risks for losses and/or soil accumulation were also assessed and discussed in relation to long-term sustainability and health aspects.The primary source of nutrient input involved a combination of chemical fertilisers, manure (chicken) and irrigation water. A variable composition and availability of the latter two sources greatly influenced the relative magnitude of the final total loads for individual elements. Despite relatively good nutrient use efficiencies being demonstrated for N (46–86%) and K (66–94%), and to some extent also for P (19–46%), high inputs still resulted in substantial annual surpluses causing risks for losses to surface and ground waters. The surplus for N ranged from 85 to 882 kg ha−1 year−1, compared to P and K which were 109–196 and 20–306 kg ha−1 year−1, respectively. Those for Cu and Zn varied from 0.2 to 2.7 and from 0.6 to 7.7 kg ha−1 year−1, respectively, indicating high risk for soil accumulation and associated transfers through the food chain.Wastewater irrigation contributed to high inputs, and excess use of organic and chemical fertilisers represent a major threat to the soil and water environment. Management options that improve nutrient use efficiency represent an important objective that will help reduce annual surpluses. A sustainable reuse of wastewater for irrigation in peri-urban farming systems can contribute significantly to the nutrient supply (assuming low concentrations of potential toxic or hazardous substances in the water). Nutrient inputs need to be better related to the crop need, e.g. through better knowledge about the nutrient concentrations in the wastewater and improved management of the amount of irrigation water being applied.  相似文献   

20.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号