首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract:  Endangered species are commonly found in several (partially) isolated populations dispersed on different fragments of a habitat, natural reserve, or zoo. A certain level of connectivity among such populations is essential for maintaining genetic variation within and between populations to allow local and global adaptation and for preventing inbreeding depression. A rule of thumb widely accepted by the conservation community is that one migrant per generation (OMPG) into a population is the appropriate level of gene flow. This rule is based on Wright's study of his island model under a long list of simplifying assumptions. I examined the robustness of the OMPG rule to the violation of each of the many assumptions, quantifying the effect with population genetics theory. I showed that, when interpreted as one effective migrant per generation, OMPG is generally valid for real populations departing from the ideal model in the discrepancies of actual (  N ) and effective (  Ne  ) population sizes and actual ( m ) and effective ( me  ) migration rates. I also addressed the issue of converting the effective number of migrants (  Me= Neme  ) into the actual number of migrants ( M = Nm  ) of a certain age and sex. In particular, Ne < N , a case common for natural populations, did not necessarily require M > Me to maintain a certain level of differentiation among populations. Rather, translating the elusive Me into the manageable M depends on the specific causes (e.g., biased sex ratio, reproductive skew) that lead to Ne < N .  相似文献   

2.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

3.
Abstract: Genetic diversity is expected to decrease in small and isolated populations as a consequence of bottlenecks, founder effects, inbreeding, and genetic drift. The genetics and ecology of the rare perennial plant Lychnis viscaria (Caryophyllaceae) were studied in both peripheral and central populations within its distribution area. We aimed to investigate the overall level of genetic diversity, its spatial distribution, and possible differences between peripheral and central populations by examining several populations with electrophoresis. Our results showed that the level of genetic diversity varied substantially among populations (  H exp = 0.000–0.116) and that the total level of genetic diversity (mean H exp = 0.056) was low compared to that of other species with similar life-history attributes. The peripheral populations of L. viscaria had less genetic variation (mean H exp = 0.034) than the central ones (0.114). Analysis of genetic structure suggested limited gene flow (mean F ST = 0.430) and high differentiation among populations, emphasizing the role of genetic drift (  N e m = 0.33). Isolation was even higher than expected based on the physical distance among populations. We also focused on the association between population size and genetic diversity and possible effects on fitness of these factors. Population size was positively correlated with genetic diversity. Population size and genetic diversity, however, were not associated with fitness components such as germination rate, seedling mass, or seed yield. There were no differences in the measured fitness components between peripheral and central populations. Even though small and peripheral populations had lower levels of genetic variation, they were as viable as larger populations, which emphasizes their potential value for conservation.  相似文献   

4.
Abstract:  Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure ( FST ) and within-deme heterozygosity ( HS ). A similar part of variance in median time to extinction was explained by a combination of local population size ( N ) and heterozygosity ( HS ). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.  相似文献   

5.
The genetic polymorphism of natural populations of Lepilemur mustelinus ruficaudatus was studied by protein electrophoresis. We sampled blood from 72 individuals from four populations separated by geographic or anthropogenic barriers from southwestern Madagascar. Six out of 22 enzyme loci showed genetic variation with a degree of polymorphism of 0.273. The expected and observed degree of genetic heterozygosity over all loci is similar to that of other primates (He = 0.058, Ho = 0.036). The F-statistics revealed that the four subpopulations were similar with respect to gene structure (FST = 0.065, p = 0.016), but the genotypic structures within subpopulations were inconsistent with random mating. For the total of the four subpopulations the proportion of heterozygous individuals was significantly smaller than expected under random mating (FIS = 0.373, FIT = 0.414, p < 0.01). These results correspond closely to what is expected considering the low migration ability of individuals of L. m ruficaudatus leading to small and rather isolated inbred populations.  相似文献   

6.
I compared primate abundances in an old forest and in adjacent regenerating farm clearings abandoned by slash-and-burn agriculturalists in Sierra Leone, West Africa. Univariate correlation procedures were used to identify socioecological characteristics of primate species that best explained success (abundance) of primates in regenerating farm clearings adjacent to old forest. A highly frugivorous diet was the single most significant primate characteristic correlated with use of abandoned farms (rs = 0.886, p = 0.019). In contrast, other studies of primates in disturbed habitats determined that a frugivorous diet was strongly negatively correlated with primate use of selectively logged forest and other disturbed habitats. These contrasting results expose the hazard of generalizing about ecological correlates of primate success in disturbed habitats, which may be site or disturbance specific. Although this warning is derived from studies of primates, it may apply to other taxa as well.  相似文献   

7.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

8.
Levels of variation in eight large captive populations of D. melanogaster (census sizes ∼ 5000) that had been in captivity for periods from 6 months to 23 years (8 to 365 generations) were estimated from allozyme heterozygosities, lethal frequencies, and inversion heterozygosities and phenotypic variances, additive genetic variances ( V A), and heritabilities ( h 2) for sternopleural bristle numbers. Correlations between all measures of variation except lethal frequencies were high and significant. All measures of genetic variation declined with time in captivity, with those for average heterozygosities, V A, and h 2 being significant. The effective population size ( N e) was estimated to be 185–253 in these populations, only 0.037–0.051 of census size (N). Levels of allozyme heterozygosities declined rapidly in two large captive populations founded from another wild stock, being reduced by 86% and 62% within 2.5 years in spite of being maintained at sizes of approximately 1000 and 3500. Estimates of N e/ N for these populations were only 0.016 and 0.004. Two estimates of N e/ N for captive populations of D. pseudoobscura from data in the literature were also low at 0.036 and 0.012. Consequently, the rate of loss of genetic variation in captive populations and endangered species may be more rapid than hitherto recognized. Merely maintaining captive populations at large census sizes may not be sufficient to maintain essential genetic variation.  相似文献   

9.
Abstract:  The area of Caricion davallianae alliance in Switzerland has been considerably reduced and fragmented during the last 150 years. We assessed the genetic variability, inbreeding level, and among-population differentiation of two common habitat-specific plant species, Carex davalliana SM. and Succisa pratensis Moench, in 18 Caricion davallianae fen meadows subjected to fragmentation. We used a spatial field design of fen systems (six systems total), each consisting of one large habitat island and two small habitat islands. We used allozyme electrophoresis to derive standard genetic parameters ( A, P, HO, HE, FIS, FST ). In Carex we identified a consistently lower A in isolated habitat islands; furthermore, HE was lower in small habitat islands than in large habitat islands. In Succisa we identified a lower HO in small habitat islands than in larger ones. Small habitat islands were marginally significantly differentiated (  FST ) from large islands for Succisa . For both species, no effects were evident for FIS ; therefore, we argue that genetic drift rather than inbreeding is the main cause of the observed differences. The genetic structure of Carex and Succisa in small habitat islands differed from that in large habitat islands, but differences were small. It appears that the observed differences in genetic variability among fen meadows correspond to observed differences in fitness and demographic traits. We show that habitat fragmentation affects not only the rare species in an ecosystem but also reduces the survival probabilities of common species. One of the main goals of conservation should be to mitigate fragmentation of natural habitats in order to increase population sizes and connectivity.  相似文献   

10.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

11.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

12.
Abstract: Ecological and genetic properties of the largely aquatic salamander, D. quadramaculatus, were assessed in paired control and logged watersheds in two forests of the Southern Appalachian Biosphere Reserve Cluster. Salamanders were larger but relatively less abundant in watersheds of the more extensive and more recently cut forest. Genetic diversity derived from electrophoretic analyses of 14 loci was lower in the forest where the time available for population recovery was least. Populations in relatively undisturbed watersheds in both forests, however, tended to exhibit lower heterozygosity levels than those in previously logged watersheds, but the differences were not as striking. Confounding effects from elevation differences among watersheds were also detected. An analysis of the six subpopulations using Wright's F statistics showed moderate levels of genetic differentiation among the subpopulations. The genetic and ecological differences among populations between the two reserves are interpreted in relation to recent ideas of bottleneck theory and genetic diversion, the history of disturbance and patch dynamics, and population viability and reserve structure.  相似文献   

13.
Abstract: The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter ( Enhydra lutris ) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Mitochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size ( r s = −0.741, p = 0.038) and minimum population size ( r s = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, although growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.  相似文献   

14.
Equalization of family sizes is recommended for use in captive breeding programs, as it is predicted to double effective population sizes, reduce inbreeding, and slow the loss of genetic variation. The effects of maintaining small captive populations with equalization of family sizes versus random choice of parents on levels of inbreeding genetic variation, reproductive fitness, and effective population sizes ( N e) were evaluated in 10 lines of each treatment maintained with four pairs of parents per generation. The mean inbreeding coefficient ( F ) increased at a significantly slower rate with equalization than with random choice (means of 0.35 and 0.44 at generation 10). Average heterozygosities at generation 10, based on six polymorphic enzyme loci, were significantly higher with equalization (0.149) than with random choice (0.085), compared to the generation 0 level of 0.188. The competitive index measure of reproductive fitness at generation 11 was more than twice as high with equalization as with random choice, both being much lower than in the outbred base population. There was considerable variation among replicate lines within treatments in all the above measures and considerable overlap between lines from the two treatments. Estimates of N e for equalization were greater than those for random choice, whether estimated from changes in average heterozygosities or from changes in F. Equalization of family sizes can be unequivocally recommended for use in the genetic management of captive populations.  相似文献   

15.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

16.
Managers of small populations often need to estimate the expected time to extinction Te of their charges. Useful models for extinction times must be ecologically realistic and depend on measurable parameters. Many populations become extinct due to environmental stochasticity, even when the carrying capacity K is stable and the expected growth rate is positive. A model is proposed that gives Te by diffusion analysis of the log population size nt (= loge Nt). The model population grows according to the equation Nt+1 = RtNt, with K as a ceiling. Application of the model requires estimation of the parameters k = logK, rd = the expected change in n, vr = Variance(log R), and ϱ the autocorrelation of the rt. These are readily calculable from annual census data (rd is trickiest to estimate). General formulas for Te are derived. As a special case, when environmental fluctuations overwhelm expected growth (that is rd 0), Te = 2no(k - no/2)/vr. If the rt are autocorrelated, then the effective variance is vre vr (1 + ϱ)/(1 - ϱ). The theory is applied to populations of checkerspot butterfly, grizzly bear, wolf, and mountain lion.  相似文献   

17.
Genetic variation of allozymes within populations of Pocillopora damicornis from southwestern Australia was consistent with a primary role of local asexual proliferation of clones in population maintenance. Populations were composed typically of two to four multilocus genotypes accounting for 40 to 80% of individuals, with the remainder assigned to genotypes occasionally in twos or threes but more commonly singly. In the three populations where recruitment was examined genetically, 84% of all first-year recruits was assigned to clones represented in the population's resident adults. The majority of these recruits came from the most highly-replicated of the adult clones. The observed genotypic diversity was, on average, about half that calculated to occur for the same allelic frequencies in a sexually-reproducing population with free recombination. Despite the prevalence of asexual reproduction, both through planulae and fragments, the existence of a sexual mode of reproduction was inferred from the high level of variation produced by pooling populations, the existence of novel genotypes and the concordance of clonal gene frequencies at many sites with the predictions of Hardy-Weinberg equilibria.  相似文献   

18.
Abstract: The endangered Hawaiian monk seal breeds at six locations in the northwestern Hawaiian Islands. To determine whether significant genetic differentiation exists among these sites, we used microsatellite loci to examine the monk seal population structure at the five largest breeding colonies. Of 27 loci isolated from other seal species, only 3 were polymorphic in an initial screening of one individual from each breeding site. Only two alleles were found at each of these 3 loci in samples of 46–108 individuals. This extremely low variation is consistent with other measures of genetic variability in this species and is probably the result of a recent severe population bottleneck, combined with a long-term history of small population sizes. Although the smallest monk seal subpopulation in this study ( Kure Atoll) showed some evidence of heterozygote deficit, possibly indicative of inbreeding, the next smallest ( Pearl and Hermes Reef) had an apparent excess of heterozygous individuals. Genetic differentiation was detected between the two subpopulations at extreme ends of the range ( Kure and French Frigate Shoals). This trend was significant only at the microsatellite locus for which we had the largest sample size ( Hg6.3: R ST = 0.206, p = 0.002; allelic goodness of fit G h = 15.412, p < 0.005). French Frigate Shoals is the source population for translocated animals that have been released primarily at Kure Atoll. Differentiation between these sites consisted of allele frequency differences (with the same allele predominant in each location at all three loci), rather than the preservation of alternative alleles. Although the translocations have had positive demographic effects, we recommend continued genetic monitoring of both the source and recipient populations because translocated individuals are now entering the breeding population.  相似文献   

19.
Effects of Selective Logging on the Butterflies of a Bornean Rainforest   总被引:7,自引:0,他引:7  
Abstract: Selective logging has been the main cause of disturbance to tropical forests in Southeast Asia, so the extent to which biodiversity is maintained in selectively logged forest is of prime conservation importance. We compared the butterfly assemblages of Bornean primary rainforest to those of rainforest selectively logged 6 years previously. We sampled by means of replicated transects stratified into riverine and ridge forests and we included roads in the logged forest. There was a three-fold variation in species richness and abundance over the 8-month sampling period. More species and individuals were observed in the logged forest, although between-replicate variability was high. Rarefied species richness was positively correlated with canopy openness within the range of disturbance levels encountered at our forest sites. Within families, there was no significant difference in the number of species between primary and logged forest. There was a significant difference in the relative abundance of species, but this was due largely to the abundance of one or two species. Community ordination separated the sites along a gradient of disturbance and revealed strong differences between riverine and ridge-forest butterfly assemblages in primary forest that were obscured in logged forest. There was no evidence that logging has resulted in a change in the composition of the butterfly assemblages from species with a local distribution to more widespread species. We conclude that at a logged forest site in close proximity to primary forest, low intensities of logging do not necessarily reduce the species richness or abundance of butterflies, although assemblage composition is changed.  相似文献   

20.
Abstract: If logging is to be compatible with primate conservation, primate populations must be expected to recover from the disturbance and eventually return to their former densities. Surveys conducted over 28 years were used to quantify the long-term effects of both low- and high-intensity selective logging on the density of the five common primates in Kibale National Park, Uganda. The most dramatic exception to the expectation that primate populations will recover following logging was that group densities of Cercopithecus mitis and C. ascanius in the heavily logged area continued to decline decades after logging. Procolobus tephrosceles populations were recovering in the heavily logged areas, but the rate of increase appeared to be slow (0.005 groups/km2 per year). Colobus guereza appeared to do well in some disturbed habitats and were found at higher group densities in the logged areas than in the unlogged area. There was no evidence of an increase in Lophocebus albigena group density in the heavily logged area since the time of logging, and there was a tendency for its population to be lower in heavily logged areas than in lightly logged areas. In contrast to the findings from the heavily logged area, none of the species were found at a lower group density in the lightly logged area than in the unlogged area, and group densities in this area were not changing at a statistically significant rate. The results of our study suggest that, in this region, low-intensity selective logging could be one component of conservation plans for primates; high-intensity logging, however, which is typical of most logging operations throughout Africa, is incompatible with primate conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号