首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 167 毫秒
1.
为了解贵阳市比例坝生活垃圾填埋场渗滤液中重金属污染现状,对该填埋场产生的渗滤原液及周边水样中的重金属Fe、Mn、Zn、Pb、Cr、Cd、Ni、Cu、As、Hg等的含量进行了调查分析。结果表明,渗滤原液中除Fe、Mn含量较高外,其余重金属含量较低或未检出,经过现场渗滤液处理站的处理,重金属含量均远低于相关排放标准或未检出;渗滤液对周边地下水的重金属污染主要表现为Fe和Mn,对周边地表水的重金属影响不大。  相似文献   

2.
新疆和硕绿洲采集82个耕地土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用地统计法、污染负荷指数(PLI)和潜在生态风险指数(RI)评估农田土壤重金属污染和潜在生态风险,并讨论重金属主要来源。结果表明:(1)和硕绿洲农田土壤所有重金属元素含量平均值均未超出国家二级标准的限值,Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的2.0、1.51、1.18、2.13和8.47倍。(2)农田土壤Cd与Zn呈现中度污染,Cr、Cu、Ni和Pb轻度污染,Mn轻微污染,As无污染。研究区PLI平均值呈现轻度污染。(3)各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Cr、Zn与Pb。农田RI平均值属于轻微生态风险。重金属元素含量、污染与生态风险空间分布格局各不相同。(4)和硕绿洲农田土壤As、Pb和Zn主要受到人为因素的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的影响,Cd受人为污染和自然因素共同影响。Cd是研究区农田土壤主要的污染因子之一,对农田土壤污染及潜在生态风险的贡献较大,农田土壤Cd污染值得关注。  相似文献   

3.
苏州古城区域河道底泥的重金属污染分布及生态风险评价   总被引:4,自引:4,他引:0  
白冬锐  张涛  包峻松  陈坦  王洪涛  金曦  金军  杨婷 《环境科学》2021,42(7):3206-3214
本文分析了苏州古城区域20个代表性断面中8种重金属(Cd、Cu、Cr、As、Mn、Ni、Pb和Zn)的含量,评价了重金属的污染程度和潜在生态风险并甄别了污染来源.结果表明,苏州古城区域河道底泥中Cd、Cu、Cr、As、Mn、Ni、Pb和Zn的平均含量分别为1.1、142.6、90.2、17.2、800.1、63.3、199.1和384.2 mg·kg-1,超过江苏省土壤背景值的采样点比例分别为100%、100%、65%、95%、70%、100%、95%和100%.利用地累积指数评价发现,8种重金属元素污染程度依次为Pb > Cd > Cu > Zn > Cr > Ni > As > Mn,总体上Pb处于强度污染水平,Cd、Cu、Zn和Cr处于中强度污染水平,Ni和As处于轻度污染水平,Mn处于无污染水平.潜在生态风险指数评价显示,8种重元素的潜在生态风险依次为Cd > Pb > Cu > As > Ni > Zn > Cr > Mn,总体上Cd、Pb和Cu处于中风险水平,其余5种重金属处于低风险水平.古城区域内北部河道和南部河道底泥重金属的平均含量、地累积指数值和潜在生态风险指数值均大于干将河和环城河,水环境重金属治理应重点关注古城区域内部.相关性分析和主成分分析表明,Cd、Cu、Cr、As、Ni、Pb和Zn元素可能源于化肥、路面老化、轮胎磨损和尾气排放等人为因素,Mn则主要源于自然因素.  相似文献   

4.
开都河下游绿洲耕地土壤重金属污染及潜在生态风险   总被引:3,自引:0,他引:3  
开都河下游绿洲采集98个耕地土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量.基于地统计法,污染负荷指数法和潜在生态风险指数法研究耕地土壤重金属污染和潜在生态风险,并对重金属的来源进行讨论.结果表明:(1)研究区Cd含量平均值超出《国家土壤环境质量标准》中Ⅱ级标准的11.08倍.Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的55.42、1.32、1.36、3.40和5.14倍.重金属元素空间分布各不相同,部分区域出现高值区,表明人类活动对耕地土壤环境具有负面效应.(2)研究区耕地土壤Cd呈现重度污染,Pb呈现中度污染,Cr、Cu、Ni和Zn呈现轻度污染,As和Mn呈现无污染态势.Cd是污染面积最大,污染程度最高的元素.研究区污染负荷指数PLI的平均值为1.68,呈现轻度污染.(3)各重金属元素单项生态风险指数(E)的平均值从大到小依次为:Cd、Ni、As、Cu、Pb、Cr与Zn.研究区综合生态风险指数(RI)的平均值为355.31,属于较强生态风险.(4)研究区耕地土壤As、Cd、Pb和Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学特征的控制.Cd是研究区耕地土壤主要的污染因子,对PLI和RI的贡献很大,耕地土壤中Cd污染必须关注.  相似文献   

5.
不同岩性对氨氮吸附影响的实验研究   总被引:1,自引:0,他引:1  
用粉砂、粉质粘土、粉土为材料,研究不同岩性对垃圾填埋场渗滤液中NH4 -N的吸附作用.同时对粉砂、粉质粘土、粉土吸附NH4 -N的机理进行了初步探讨.实验结果表明,三种岩性吸附N出-N的等温吸附曲线均符合Langmuir模式,且最大吸附量分别为粉砂1.653mg/g,粉质粘土1.735 mg/g,粉土0.358mg/g.不同岩性吸附NH4 -N的能力差异较大,三种岩性的吸附顺序为:粉质粘土>粉砂>粉土.说明粉砂和粉质粘土的防污能力较粉土强.  相似文献   

6.
为探究秦王川盆地土壤重金属的来源、分布及污染情况,测定了研究区51个表层土壤样品的8种重金属(Cr、Zn、Cu、As、Pb、Mn、Ni、Cd)总量和pH值;采用多元统计、地质统计方法和GIS技术对重金属的来源、空间变异结构和分布进行了研究,利用污染指数法和模糊综合评判法对重金属污染进行了评价.结果表明:Zn、Ni含量均值大于当地背景值,其余重金属含量均值都低于背景值;Cd属于强变异,其余均为中等变异,Zn、Cr服从对数正态分布,其余均服从正态分布;Cr、Cu、As、Pb、Mn主要为成土母质等自然来源,Cd、Ni主要来源于工业、交通污染,Zn主要来源于农业生产;Zn、As、Ni、Cd的空间分布呈岛状,Cu、Mn呈带状分布,Cr、Pb呈岛状和带状分布相结合的特点;污染指数评价结果为Cr、Cu、Pb处在警戒线,As、Mn、Ni属于轻度污染,Cd为中度污染,Zn为重度污染;模糊综合评判得出1个土样为轻度污染,2个为警戒程度,其余为安全;土壤质量标准是反映土壤质量的依据,总体看,研究区土壤重金属环境质量良好,均未超过国家土壤环境质量二级标准.  相似文献   

7.
余高  陈芬  张晓东  孙约兵 《环境科学》2023,44(8):4416-4428
为了解锰矿周边农田土壤重金属污染和生态风险情况,采集某矿区周边174份农田土壤样品,分析了土壤中8种重金属(Cu、 Zn、 Pb、 Cr、 Ni、 Mn、 As和Hg)的含量,采用主成分分析(PCA)和正定矩阵因子分解模型(PMF)分析土壤重金属的来源,通过单因子污染指数法、地累积指数法、潜在生态风险指数法和人体健康风险评价模型评价土壤重金属生态环境风险.结果表明,研究区农田土壤Cu、 Zn、 Cr、 Ni、 Mn和Hg含量的均值均高于贵州省土壤背景值,100%样本Zn和38.86%样本Cu均超过农用地土壤污染风险筛选值.源解析显示农田土壤重金属的主要来源为矿业开采排放源,其次为农业活动和交通运输混合源、自然源和农业活动源.风险评价结果表明,土壤中Ni、 Cr、 Pb和As属于清洁水平,Hg和Cu属于轻度污染水平,Zn属于偏中度污染水平,Mn属于偏重污染水平.Cu、 Zn、 Pb、 Cr、 Ni、 Mn和As存在轻微潜在生态风险,Hg存在强潜在生态风险.研究区整体存在强潜在生态风险,8种重金属存在致癌风险和0~5岁儿童非致癌风险,主要贡献因子分别是Cr和Mn.  相似文献   

8.
刘莹莹  赵勇胜  董军  刘鹏  朱志国  孙艳 《环境科学》2008,29(7):1948-1954
通过一维土柱穿透实验和静态实验,分别从空间和时间2方面研究了不同天然地层介质对垃圾渗滤液的PH缓冲性能.结果表明,细砂、粉砂和粘土的本底pH缓冲容量分别为79.9·pH-1 mmol/kg、207.5·pH-1 mmol/kg、456.4·PH-1 mmol/kg.受垃圾渗滤液污染后,除细砂外,随着时间的延长、离污染源距离的减小,每种介质总的pH缓冲容量都逐渐减小;其中碳酸钙缓冲体系的缓冲容量均逐渐增大;硅酸盐、阳离子交换缓冲体系的缓冲容量无明显变化;铝、氧化铁缓冲体系的缓冲容量逐渐减少,但土壤铝缓冲体系的缓冲容量则呈现出先增大后减少的趋势.细砂各个缓冲体系的缓冲容量随时、空变化均呈现出略微增大的趋势.4种介质对渗滤液的pH缓冲能力的顺序是:细砂<粉砂<粘土<土壤.土壤、粘土对垃圾渗滤液有较好的pH缓冲性能,同时对渗滤液中各种污染物的迁移,扩散也有较好的控制作用.  相似文献   

9.
宝鸡市区土壤重金属污染影响因子探测及其源解析   总被引:6,自引:4,他引:2  
张军  董洁  梁青芳  杨宁宁  耿雅妮 《环境科学》2019,40(8):3774-3784
为深入分析工业城市土壤重金属污染的影响因子及来源途径,本文以宝鸡市区采集的62份表层(0~20 cm)土壤样品为研究对象,使用电感耦合等离子体质谱仪(ICP-MS)测定重金属(Cd、As、Cu、Pb、Zn、Cr、Mn和Ni)含量,基于地统计方法及地理探测器模型,以土壤重金属污染负荷指数(PLI)为主导指标,探测土壤重金属污染的影响因子,并使用Unmix6. 0受体模型进行重金属源解析.结果表明:①宝鸡市区表层土壤重金属Cd、Pb、Cu、Zn、As、Cr、Mn和Ni含量均值分别为0. 77、16. 75、40. 52、261、17. 03、49. 18、331和30. 52 mg·kg~(-1),其中Cd和Zn均值超过了国家二级标准,是陕西省土壤背景值的8. 2倍和3. 8倍,Cu、As和Ni均值也超过了陕西省土壤背景值,Cd和Zn在城区土壤中存在重度污染现象.②宝鸡市区表层土壤重金属区域总污染负荷指数(PLI_(zone))达1. 36,为轻度污染,经地理探测器分析,土壤质地和铁路距离对污染分布的解释力最强,P_(D,H)分别为0. 040和0. 026,交互解释力均达0. 099.③Cd、Cu和As主要为工农业活动所致的"人为源",Zn和Ni为交通排放造成的"人为源",Cr、Pb和Mn主要为"混合源".研究区表层土壤重金属主要来源为"混合源",为轻度污染级,土壤质地和距铁路距离是土壤重金属污染的主要影响因子.本研究可以为宝鸡市土壤重金属污染与防治提供科学依据.  相似文献   

10.
文章从乌鲁木齐市交通区、公园、文教区和居民区采集了83个地表灰尘样品,测定其中As、Cd、Cr、Cu、Hg、Mn、Ni、Pb和Zn等9种微量元素的含量。采用负荷污染指数法和潜在生态风险指数法,评价了乌鲁木齐市地表灰尘中微量元素污染及潜在生态风险。结果表明:(1)研究区地表灰尘中Cd、Cr、Cu、Hg、Ni、Pb和Zn等元素富集明显,其含量分别为新疆土壤背景值的2.0、1.35、1.38、8.24、1.28、2.09和3.26倍;(2)乌鲁木齐市地表灰尘中Hg和Zn呈现重度污染,Pb呈现中度污染,Cd、Cr、Cu和Ni呈现轻度污染,As呈现轻微污染,Mn呈现无污染;各功能区地表灰尘中微量元素负荷污染指数平均值均呈现轻度污染;(3)地表灰尘中各微量元素单项生态风险指数从大到小依次为Hg、Cd、Pb、As、Cu、Ni、Zn、Cr、Mn,地表灰尘中微量元素综合生态风险指数平均值呈现较强生态风险。各功能区地表灰尘中微量元素生态风险指数从大到小依次为文教区、公园、交通区、居民区。Cd和Hg是研究区地表灰尘中主要的生态风险因子。  相似文献   

11.
阻隔墙能够有效阻止地下水中的污染物扩散,以水泥土为研究对象,通过渗透实验、稳定性实验、吸附实验及工程案例研究了阻隔墙的性能。结果表明:随着水泥掺量增大,水泥土渗透系数不断降低,粉质黏土、黏质粉土、粉砂水泥掺量分别为12%、20%、25%时,抗渗效果较好。无侧限抗压强度随水泥掺量增加而增大,粉砂水泥土阻隔墙增幅显著。土壤黏粒含量越高,满足水泥土坍落度要求的水灰比越大。等温吸附符合Freundlich模型,水泥土对Cu2+和Zn2+吸附效果较四氯酚和六价铬显著。吸附动力学符合准二级吸附动力学方程,吸附过程主要为化学吸附,粉质黏土水泥土吸附Cu2+和Zn2+的平衡吸附量最高,分别为7.692,7.143 mg/g。工程应用表明,水泥土阻隔墙对地下水石油烃有机污染物具有显著的阻控效果,监测井检测浓度均低于风险控制值。  相似文献   

12.
江苏盐城原生湿地表层沉积物中的重金属污染评价   总被引:4,自引:1,他引:3  
通过对江苏盐城盐沼湿地表层沉积物中的Hg、As、Cd、Cr、Cu、Pb、Zn、Ni等8种重金属元素的分析得出,所测样品指标的平均值除Hg、As和Zn与背景值较接近外,其余重金属元素在沉积物中的含量都高于背景值,Cu的含量为背景值的6倍,属超Ⅱ类沉积物。其次是Cd,以偏中污染为主。运用地累积指数法对8种重金属的污染评价结果为CuCdCrNiPbAsZnHg,且以Cu的污染最为严重。同时,结合粒度分析可知,沉积物在空间分布上的累积强度与粒径大小密切相关,粒径越大,污染程度越小。有植被覆盖的潮滩对重金属的吸附能力明显要高于无植被覆盖的光滩。与近年来的背景值相比,重金属在沉积物中的增加可能与核心区外围经济活动有关。  相似文献   

13.
为摸清深圳市6种常规重金属(Cd、Hg、Cr、Cu、Zn、Ni)在不同剖面层次的背景含量及垂向分布规律,探究土壤剖面重金属背景含量与理化参数的关系,在全市基本生态控制线区域布设土壤典型剖面样点50个,每个点位按A、B、C3层采集土壤样品共150个。结果表明,土壤剖面不同采样层次重金属背景含量存在显著差异,随着深度增加,Cr、Cu、Zn、Ni的背景含量呈现逐渐增加的规律,Cd和Hg的背景含量呈现先减少后增加的趋势。深圳市土壤剖面中6种重金属的背景含量相对较低,整体上略低于“七五”全国土壤环境背景值。土壤剖面理化参数存在典型的南方土壤特性,土壤pH值呈酸性,随着深度增加,土壤容重、Al2O3和Fe2O3含量逐渐增加,而有机质、CaO含量呈逐渐下降趋势,离子交换量呈先增加后减少趋势;土壤机械组成特征为砂粒最多、粉粒次之、粘粒最少。将土壤剖面重金属背景含量与理化参数进行相关性分析,发现Fe2O3、Al2O3和土壤机械组成与土壤重金属背景含量相关性最为显著。逐步多元线性回归分析表明,影响土壤重金属背景含量的理化参数依次为Fe2O3、Al2O3、机械组成和阳离子交换量。  相似文献   

14.
泉州市街道灰尘中重金属来源分析   总被引:2,自引:0,他引:2  
用ICP-MS测定了泉州市不同功能区街道灰尘中11种重金属元素(Cr、Fe、Mn、Ni、Cu、Zn、Cd、Sb、Pb、Bi、Co)的含量。结果表明,上述元素的平均含量均高于当地土壤背景值,尤以Zn、Cd、Sb、Pb富集较严重。多元统计分析(相关分析、因子分析、聚类分析)结果显示,泉州市街道灰尘中上述重金属来源可分为三大类:Cu、Pb、Sb、Cd、Bi主要来自机械加工和交通污染;Mn、Zn主要来自农药喷洒和生活污染;Fe、Cr、Ni、Co则主要来自钢铁工业污染和自然源。  相似文献   

15.
汉江上游现代洪水滞流沉积物重金属元素特征   总被引:1,自引:0,他引:1       下载免费PDF全文
年对汉江上游现代洪水SWD(滞流沉积物)系统采样,并分析样品的粒度、烧失量和重金属元素质量分数,以揭示该流域内大洪水期间重金属的面源污染状况. 结果表明:汉江上游现代洪水SWD的粒度成分中,黏粒(粒径<2μm,下同)占1.3%~6.9%,细粉沙(2~<16μm)占9.0%~40.9%,粗粉沙(16~63μm)占22.7%~50.3%,并且三者沿程自上而下逐渐增加;而沙粒(>63μm)占7.1%~65.6%,沿程自上而下呈逐渐减少的趋势. 与全国泛滥平原沉积物重金属背景值比较发现,Co、Cr、Ba和V累积明显,而w(Cu)、w(Ni)、w(Pb)和w(Zn)不同程度地高出背景值. 运用地质累积指数(Igeo)和污染指数(PI)评价表明,主要污染元素的地质累积指数为Co>Cr>Ba>V,而Cu、Ni、Pb和Zn都属于清洁. 汉江上游现代洪水SWD的重金属整体处于中等污染水平. 利用相关性和主成分分析发现,Co和Cr多富集在沙粒中,而Cu、Ni、Pb、Zn、Ba和V多累积在黏粒、细粉沙和粗粉沙中. 现代洪水SWD的粒径分布和重金属元素质量分数空间变化明显,聚类分析发现其空间分布可分为安康盆地、汉江上游北岸和汉江上游南岸3类,这种分布特征与汉江上游地貌特征、羽毛状水系和人类活动的影响等密切相关.   相似文献   

16.
湘西花垣矿区土壤重金属污染及其生物有效性   总被引:7,自引:1,他引:6  
以花垣矿区4个锰矿点、5个铅锌矿点为现场,对湘西花垣矿区的土壤重金属总量及有效态含量进行了测定,采用污染指数法对矿区土壤重金属污染状况进行了评价,在此基础上,结合主成分分析和线性回归分析等统计学方法,探讨了该矿区重金属污染的主要因子,重金属有效态含量与其对应总量的关系.结果表明:①两矿区土壤Mn、Pb、Cd含量较高,分别为湖南省土壤背景值的8.7、21.5和2.9倍,且大多数土样Pb、Cd含量超过国家土壤环境质量三级标准,对矿区土壤造成污染.②重金属污染评价结果显示,目前两矿区土壤受到轻度的Pb污染,中-重度Cd污染.综合污染指数显示锰矿区为轻-中度污染;铅锌矿区为中-重度污染.③两矿区土壤中Pb、Cd有效态含量相对较高,占总量的比例>10%,且DTPA提取态Mn、Pb、Zn、Cd含量与其总量呈极显著正相关(P<0.01).主成分分析结果显示,Mn、Pb、Zn、Cd和DTPA-Mn、DTPA-Pb、DTPA-Zn、DTPA-Cd是导致花垣两矿区重金属污染的主要因子.因此,应采取一定措施对矿区土壤重金属污染进行治理.  相似文献   

17.
运用潜在生态风险指数法和相关性分析方法对雷州半岛红树林土壤11种重金属(As、Cd、Co、Cr、Cu、Hg、Mn、Ni、Pb、V、Zn)进行生态风险评价和来源分析。结果表明,Hg、As、Cu、Zn等4种重金属元素含量在个别采样区超过国家土壤环境质量一级标准;As、Cd、Co、Cr、Cu、Hg、Mn、Ni和Zn等9种元素含量平均值超过环境背景值。雷州半岛红树林湿地土壤重金属总的潜在生态风险程度处于中等污染水平,其中Hg元素为强污染,Cd元素为中等污染,其他元素为轻微污染。从空间分布看,南山和观海长廊采样区重金属污染为强污染,企水镇采样区为轻微污染,其他采样区为中等污染。重金属元素的富集与土壤自然特性和人为排放密切相关,黏土含量和有机质含量较高的土壤、工业较发达、人类活动较强等区域土壤重金属生态风险程度较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号