首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Effluents from four healthcare facilities were characterized for the concentration of 16 common active pharmaceutical ingredients. The sampled facilities included a hospital, nursing care, assisted living, and independent living facility located within a single municipal wastewater system in Texas. Eleven of the 16 monitored pharmaceuticals were detected in at least 1 healthcare facility effluent and 2 measured antibiotics (sulfamethoxazole and trimethoprim) were detected in all 4 facility effluents. Active pharmaceutical ingredient concentrations ranged from non-detectable levels for several corticosteroids in all facility effluents to 180 microg/L sulfamethoxazole in the nursing care wastewater effluent. The mass of active pharmaceutical ingredients discharged to the municipality's wastewater conveyance system was determined by combining individual facility concentration data and daily wastewater flow. The estimated daily mass loading of all 16 pharmaceuticals ranged from 0.16 g/day to 23 g/day in the assisted living facility and nursing wastewater effluents, respectively. The combined active pharmaceutical ingredient mass loading for all four facilities was 42.6 g/day. These findings provide source characterization data for 16 common pharmaceuticals in healthcare facility wastewater and provide a basis for risk assessment of pharmaceuticals present in healthcare facility wastewaters.  相似文献   

2.
The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.  相似文献   

3.
The extensive use of veterinary drugs in agriculture leads to contamination of manure. If this manure is used as fertiliser, soil may be exposed to the respective drugs. Additionally soil exposure may stem from contaminated sewage sludge that is used on some agricultural land as fertiliser. This study focuses on the fate of antibiotics in soil. We present a 120-day degradation experiment of six commonly used antibiotics: erythromycin, roxithromycin oleandomycin, tylosin, salinomycin and tiamulin in soil as well as calculating the resulting half-lives. The half-lives were 20 days for erythromycin, 27 days for oleandomycin, 8 days for tylosin, 16 days for tiamulin and 5 days for salinomycin; all according to 1st order kinetics. The concentration of roxithromycin remained nearly unchanged during the whole experiment.  相似文献   

4.
Gao P  Ding Y  Li H  Xagoraraki I 《Chemosphere》2012,88(1):17-24
Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals.  相似文献   

5.
Lin AY  Yu TH  Lin CF 《Chemosphere》2008,74(1):131-141
This is a comprehensive study of the occurrence of antibiotics, hormones and other pharmaceuticals in water sites that have major potential for downstream environmental contamination. These include residential (hospitals, sewage treatment plants, and regional discharges), industrial (pharmaceutical production facilities), and agricultural (animal husbandries and aquacultures) waste streams. We assayed 23 Taiwanese water sites for 97 targeted compounds, of which a significant number were detected and quantified. The most frequently detected compounds were sulfamethoxazole, caffeine, acetaminophen, and ibuprofen, followed closely by cephalexin, ofloxacin, and diclofenac, which were detected in >91% of samples and found to have median (maximum) concentrations of 0.2 (5.8), 0.39 (24.0), 0.02 (100.4), 0.41 (14.5), 0.15 (31.4), 0.14 (13.6) and 0.083 (29.8) microg/L, respectively. Lincomycin and acetaminophen had high measured concentrations (>100 microg/L), and 35 other pharmaceuticals occurred at the microg/L level. These incidence and concentration results correlate well with published data for other worldwide locations, as well as with Taiwanese medication usage data, suggesting a human contamination source. Many pharmaceuticals also occurred at levels exceeding predicted no-effect concentrations (PNEC), warranting further investigation of their occurrence and fate in receiving waters, as well as the overall risks they pose for local ecosystems and human residents. The information provided here will also be useful for development of strategies for regulation and remediation.  相似文献   

6.
This study aimed to provide the first and comprehensive data on the occurrence of 17 target pharmaceuticals and personal care products (PPCPs) in urban water environment in Singapore. Meanwhile, this study also verified the suitability of these PPCPs as specific markers of raw wastewater contamination in receiving water bodies in highly urbanized areas where both surface water and groundwater are not impacted by the discharge of treated wastewater effluents. Analytical results of wastewater showed that among 17 target PPCPs examined, only 5 PPCPs were detected in 100 % of raw wastewater samples, including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), diethyltoluamide (DEET), and salicylic acid (SA). Similarly, these PPCPs were found in most surface water and groundwater. Interestingly, the three PPCPs (ACT, CBZ, and SA) were only detected in surface water and groundwater in the sampling sites close to relatively older sewer systems, while they were absent in background samples that were collected from the catchment with no known wastewater sources. This suggests that ACT, CBZ, and SA can be used as specific molecular markers of raw wastewater in surface water and groundwater. This study also confirmed that CF and DEET were not really associated with wastewater sources, thus cannot serve well as specific molecular markers of wastewater contamination in receiving water bodies. To the best knowledge of the authors, the use of ACT and SA as specific molecular markers of raw wastewater contamination in urban surface waters and groundwater was first reported. Further studies on the use of ACT, CBZ, and SA along with other chemical/microbial markers are recommended to identify and differentiate contamination sources of surface waters/groundwater.  相似文献   

7.
As part of a regional screening to evaluate the risk, for the health of populations, to certain classes of emerging substances, several families of pharmaceuticals and hormones were looked for in waters intended to drinking. Thus, 52 substances were investigated in 71 surface waters and 70 groundwaters. Results indicate that no water was free of pollutants, regardless of its origin (surface or groundwater) and the season of collect. The pharmaceuticals most frequently detected and with the highest concentration levels were salicylic acid, carbamazepine and acetaminophen. Among hormones, testosterone, androstenedione and progesterone were detected in almost all the samples. Globally the groundwaters were less contaminated than surface waters in regards pharmaceuticals frequencies and levels. On the other side, androgens and progestagens were present with comparable frequencies and levels in both compartments. The risk linked to the presence of these substances on human health is discussed.  相似文献   

8.
The occurrence of pharmaceuticals in the aquatic environment has become a matter of concern in the last decade due to potential risks posed to non-target organisms and the potential for unintended human exposure via food chain. This concern has been driven by a high detection frequency for drugs in environmental samples; these substances are produced in large quantities and are used in both veterinary and human medicine, leading to deposition and potential effects in the environment. However, few studies have focused on the presence of pharmaceuticals in rural areas associated with farming activities in comparison to urban areas. The aim of this study is to investigate the occurrence of pharmaceutically active compounds in surface waters collected from urban and rural areas in northwestern Spain. A monitoring study was conducted with 312 river water samples analysed by high-performance liquid chromatography coupled to tandem mass spectrometry. Positive detection of pharmaceuticals was made for 51 % of the samples. Decoquinate, sulfamethazine, sulfamethoxypyridazine and trimethoprim were the drugs most frequently detected, being present in more than 10 % of the samples. The sampling sites located downstream of the discharge points for wastewater treatment plants yielded the highest number of positive samples, 13 % of the positive samples were detected in these sites and 38 % of the samples collected near the collection point of a drinking water treatment plant were positive.  相似文献   

9.
In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal wastewater was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52 pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields. In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mugl(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while passing the top soil layer. Potential estrogenic effects are likely to disappear after irrigation, since the most potent steroid estrogens were not measurable.  相似文献   

10.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

11.
Sui Q  Wang B  Zhao W  Huang J  Yu G  Deng S  Qiu Z  Lu S 《Chemosphere》2012,89(3):280-286
In recent years, increasing attention has been paid to the trace-level contamination of pharmaceuticals in the water environment all over the world. Considering a large number of pharmaceuticals used, it is crucial to establish a priority list of pharmaceuticals that should be monitored and/or treated first. In the present study, we developed a ranking system based on the pharmaceutical consumption, removal performance in the wastewater treatment plants (WWTPs) and potential ecological effects, and applied to the situation of China. 39 pharmaceuticals, which had available consumption data and also been reported previously in the WWTPs of China, were selected as candidate pharmaceuticals. Among them, seventeen pharmaceuticals were considered as priority pharmaceuticals, out of which, erythromycin, diclofenac acid and ibuprofen, had the high priority. Compared with other literatures, we found that some pharmaceuticals given concerns to globally should also be included in the priority list in China; while some pharmaceuticals, not mentioned in other literatures, such as cefalexin, ketoconazole, should be also given prior consideration in China. Among all the therapeutic classes, antibiotics, which were grossly abused in China, contributed the most to the priority pharmaceuticals. However, priority antibiotics accounted for only 32% of candidate antibiotics, while 71% and 100% of the candidate anti-inflammatory and antilipidemic respectively were identified as the priority pharmaceuticals, indicating that antibiotics might be overanxiously considered in the previous studies on their behaviors in the WWTPs of China.  相似文献   

12.
The occurrence of 14 mostly used pharmaceuticals from different classes (antibiotics, β-blockers, non-steroidal anti-inflammatory drugs, and stimulant) and hormones in surface water in Istanbul, Turkey was investigated in this study. An important drinking water source, Buyukcekmece Lake and main rivers flowing into the lake were selected for the monitoring of the compounds. Sampling was conducted five different times in a year in order to observe seasonal changes. A rapid, robust and sensitive method using solid phase extraction and ultra-performance liquid chromatograph coupled with triple quadrupole tandem mass spectrometer was established for quantification of both pharmaceuticals and hormones. Limit of quantifications were between 0.5 and 1.1 ng L?1. Recoveries were between 72–119% and 61–98% for ultra-pure water and for surface water, respectively. All selected compounds were detected at least once in the samples. Some pharmaceuticals were detected as high as a few of micrograms per liter levels in the rivers. Most frequently detected compounds were caffeine and antibiotics (amoxicillin, ciprofloxacin, erythromycin and sulfamethoxazole). Synthetic hormone (17α-ethynylestradiol) was detected only 4 times corresponding least detected compound in whole sampling period. Field data confirms that amoxicillin is more prone to degradation with respect to other antibiotics. Estrone and 17-β estradiol are converted to estriol by natural processes in surface water.  相似文献   

13.

Purpose

We analyzed and compared the distributions of 13 target pharmaceuticals in different water samples from the Hangzhou metropolitan area and Linan County, Southeast China.

Methods

Sampling was conducted in five hospitals, two wastewater treatment plants (WWTPs), and Qiantang River. Samples were concentrated by solid-phase extraction and PPCP concentrations were determined by UPLC-MS/MS.

Results and discussion

Trimethoprim, erythromycin A dihydrate, norfloxacin, ofloxacin, diclofenac sodium, and atenolol were the most frequently detected pharmaceuticals in hospital effluents. Most of the pharmaceutical concentrations in hospital effluents were higher than those in the WWTP influents. Although both WWTPs adopt the anaerobic?Caerobic?Canoxic treatment process, the removal rates for pharmaceuticals, such as trimethoprim and diclofenac sodium, were completely different. Meanwhile, erythromycin A dihydrate, ofloxacin, penicillin-G, cephalexin, cefazolin, ibuprofen, and diclofenac sodium were detected in Qiantang River.

Conclusions

These results indicate that hospitals are more concentrated sources of pharmaceuticals than WWTPs, and the WWTPs are not the only route of entry of pharmaceuticals into aquatic environments in these two regions.  相似文献   

14.
Batt AL  Snow DD  Aga DS 《Chemosphere》2006,64(11):1963-1971
Samples from six private wells formerly used as sources for drinking water by the residents of Washington County (Weiser, Idaho) were collected to assess the impact of a nearby confined animal feeding operation (CAFO) on the quality of the local groundwater. All six samples were found contaminated by two veterinary antimicrobials, sulfamethazine (at concentrations from 0.076 to 0.22 μg/l) and sulfadimethoxine (at concentrations from 0.046 to 0.068 μg/l). These groundwater samples also contained elevated concentrations of nitrate and ammonium. Three of the sampled wells have nitrate levels that exceeded the maximum contaminant level set by the US Environmental Protection Agency for drinking water, with nitrate concentration as high as 39.1 mg/l. All but one well showed nitrate, which instead contained ammonium at 1.22 mg/l. Analysis of the nitrate and ammonium in these samples by isotopic ratio mass spectrometry indicated δ15N characteristic of an animal or human waste source. Results from this study underscore the role of CAFO as an important source of antibiotic contamination of groundwater.  相似文献   

15.
16.
The persistence of pharmaceuticals, hormones, and household and industrial chemicals through a pure-oxygen activated sludge, nitrification, denitrification wastewater treatment facility was evaluated. Of the 125 micropollutants that were tested in this study, 55 compounds were detected in the untreated wastewater, and 27 compounds were detected in the disinfected effluent. The persistent compounds included surfactants, fire-retardant chemicals, pesticides, fragrance compounds, hormones, and one pharmaceutical. Physical-chemical properties of micropollutants that affected partitioning onto wastewater solids included vapor pressure and octanol-water partition coefficients.  相似文献   

17.
The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.  相似文献   

18.
19.
Pharmaceuticals are commonly found both in the aquatic and the agricultural environments as a consequence of the human activities and associated discharge of wastewater effluents to the environment. The utilization of treated effluent for crop irrigation, along with land application of manure and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them ‘pseudo-persistent’. Several reviews have been published regarding the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results. This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation purposes.  相似文献   

20.

Background, aim, and scope  

Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号