首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
湍球塔和喷淋塔的海水脱硫冷态实验对比   总被引:1,自引:0,他引:1  
通过湍球塔和喷淋塔的海水脱硫冷态实验对比,研究海水脱硫过程中烟气和海水参数对湍球塔和喷淋塔脱硫的不同影响。实验结果表明,SO2分压力增大,脱硫效率和尾水pH值减小;海水碱度、pH值和液气比增大,脱硫效率和尾水pH值也随之增大;湍球塔的脱硫效率和尾水pH值与液气比改变方式无关,实验用湍球塔的合适液气比值为2.3 L/m3;湍球塔脱硫实验中,塔内气速为1.58 m/s,SO2分压力为20 Pa,水温为10.2℃,液气比为1.1~2.8 L/m3时,尾水pH值在2.4~2.8之间;增大液气比时,喷淋塔改变海水流量的脱硫效果要比改变气体流量的脱硫效果明显;塔内气速1 m/s以上时,一级喷淋塔的脱硫效率要比湍球塔小很多,有时只有湍球塔的1/2左右。  相似文献   

2.
污泥浓缩作为污泥处理的关键环节之一,开发高效的污泥浓缩工艺对于降低污泥含水率、提高脱水设备的运行效率、降低脱水能耗具有十分重要的意义。针对MBR污泥浓度高、污泥粒径小、污泥沉降性能较差等特点,故采用传统的重力浓缩和机械浓缩技术很难有效实现污泥浓缩。因此,尝试采用气浮浓缩技术降低污泥含水率的可行性。从气浮浓缩的中试结果来看,较适宜运行参数为:固体负荷为15 kg/(m2·h),水力负荷为1.5 m3/(m2·h),回流比为1,PAM投配率2‰(w/w干固体),溶气压力为0.4 MPa,气固比为0.03。经过中试设备进行气浮浓缩后,污泥含水率降低至96%左右。此外,还研究了采用气液多相泵系统对剩余污泥的浓缩效率,结果显示,该设备的使用相对于传统溶气气浮工艺,其优点表现在占地小、工程造价低以及运行成本低等方面。  相似文献   

3.
新型竖流气浮反应器工作性能与应用研究   总被引:2,自引:0,他引:2  
根据紊流气浮理论,开发了一种新型竖流气浮反应器,试验研究了它的工作性能以及实际应用效果.该反应器采用气液混合泵作为溶气设备,分离区内原水与溶气水逆向流动,采用水力方式排渣.试验结果表明,溶气效率随工作压力和吸气量的增大丽增大,但同时大气泡也会随之增多;试验条件下微气泡平均尺寸为50 μm左右,工作压力对释放的微气泡尺寸影响不大;分离区高度影响气泡-絮体共聚悬浮层的厚度和稳定性,进而影响处理效果.应用新型竖流气浮反应器处理实际的乳品废水和机械加工废水,COD去除率分别达到50%和75%以上,SS去除率超过85%.新型竖流气浮反应器作为小型污水处理设备,具有良好的可应用性.  相似文献   

4.
应用FLUENT对四喷嘴射流曝气器在不同工况下的引射空气性能进行三维数值模拟,分析了射流器内的场分布特性与气液两相流动结构;同时建立射流器性能实验台,对四喷嘴射流曝气器的性能进行实验研究。研究表明,四喷嘴射流器性能较高,能量损失较少,两相流动结构稳定;相对于单喷嘴射流器,四喷嘴射流器的流量比和效率随压力比的变化显著;四喷嘴射流曝气器在工况4下工作性能最好,其流量比q为3.20,效率η为36%,而相似工况下单喷嘴结构流量比q仅为1左右,效率η不超过20%;数值模拟结果与实验结果吻合较好。  相似文献   

5.
针对高浓度重金属污染土壤,尤其是污染负荷较高的黏土土壤,传统的物化方法难以实现其高效的洗脱。利用旋流场中土壤颗粒高速自转/公转,实现土壤颗粒污染物的强化快速脱附。土壤旋流洗脱实验分为旋流器的分离性能和单一/复合污染物的脱附性能2部分。在土壤-水体系下,旋流器的最优操作条件为:进口流量0.7 m~3·h~(-1),分流比0.12,固液比为1:20。对于Pb污染物,底流脱附效率均能达到近85%,溢流也能够达到70%,对于Cu污染物,底流和溢流脱附均能达到90%左右。对于Cr(Ⅵ)污染物,底流脱附最高能达到60%左右,但溢流洗脱效率极低。复合污染能够在单次通过后脱除Pb、Cu、Cr(Ⅵ)等多种重金属污染,且洗脱效果与单一污染洗脱时基本一致。对实际的场地修复具有指导意义。  相似文献   

6.
设计了一种中试规模的双循环垂直筛板喷射鼓泡脱硫塔,该塔由直径分别为600 mm和150 mm的两套垂直筛板结构组成双循环。一级循环采用了一块下端开有栅孔的大直径垂直筛板,二级循环则采用了上端开有栅孔的小直径垂直筛板。两级垂直筛板上的布气栅孔均可埋入吸收液下,使塔内的气液混合处于喷射鼓泡吸收状态。研究了小直径垂直筛板埋入深度分别对单独采用二级循环和采用双循环时装置脱硫效率的影响。单独采用二级循环,在保持脱硫液pH值和烟气SO2浓度一致的情况下,小直径垂直筛板的液位高度为220 mm时(喷射鼓泡操作方式)比液位高度为80 mm时(即典型小直径垂直筛板操作方式)的脱硫效率高40%左右。采用双循环操作模式时,小直径垂直筛板液位高度为220 mm时(喷射鼓泡操作方式)比液位高度为80 mm时(即典型小垂直筛板操作方式)的总脱硫效率高30%左右。  相似文献   

7.
辽河油田某配液站超稠油废水为成分十分复杂的有机混合物,对其采用混凝气浮-过滤工艺进行处理,同时改进压力溶气罐、释放器、气浮机和压力过滤器等设备,并对加药位置进行了优化选择,使该废水的处理取得了理想的效果,出水含油和SS均低于10 mg/L.  相似文献   

8.
以尿素作为吸收液,与NOx反应生成N2和CO2,脱除烟气中的氮氧化物。以一套双级串连的填料塔为主体反应器,分别对气速、液气比、反应物浓度、添加剂浓度和反应温度等参数对尿素溶液吸收NOx反应的影响进行了实验研究,获得了优化实验工况,研究结果显示,在气速为0.1 m/s、液气比为16 L/m3、三乙醇胺为0.01%(质量比)、尿素浓度为13%(质量比)工况下,反应温度为30~70℃,脱硝总效率可达50%以上,且随着NOx体积分数增加而提高。  相似文献   

9.
为了提高硝酸吸收氮氧化物的效率,对活性填料催化氧化-硝酸吸收NOx进行了研究.结果表明:活性填料能明显提高NOx的吸收效率;当NOx中NO2体积百分含量增加,其吸收效率增加;随进气浓度和液气比的增大,NOx吸收效率增加;随NO2浓度的增加,NO的吸收效率先增加后减少,在NO/NO2为3时,NO吸收效率最高;随NO的增加NO2的吸收效率先增加后减少,在NO/NO2为0.6~1之间,NO2的吸收效果较好.  相似文献   

10.
氧化镁烟气脱硫是以氧化镁为脱硫反应剂的一种湿法烟气脱硫技术,目前国内外应用甚少,但开发前景广阔。以实验室小试为基础,从气液传质入手,利用双膜理论建立脱硫过程的数学模型,从而对中试脱硫效率进行预测并进行参数敏感性分析。结果表明,模型预测的脱硫效率与实际脱硫效率有很高的吻合度,其计算参数能反映出实际运行参数对脱硫效率的影响,对实际工况中操作条件的变更以及运行参数的调试有很高的指导意义。  相似文献   

11.
本文通过对加压溶气过程的分析 ,建立了理想加压溶气过程模型 ,在此基础上推导出新的理论溶气量计算公式 ,并与现有的计算公式进行了比较。  相似文献   

12.
13.
Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.  相似文献   

14.
Oxidative biodegradation of dissolved organic matter during composting   总被引:2,自引:0,他引:2  
Dissolved organic matter (DOM) plays an important role in the microbial degradation of compost since it represents the most active organic fraction, both biologically and chemically. The detailed evaluation of the changes in the chemical and biochemical characteristics of DOM induced by oxidative biodegradation, presented in this work highlights the mechanisms involved in the degradation of soluble organic matter during composting. In fact, the results show that during the initial stages of composting, DOM is highly degradable under aerobic conditions, particularly due to the predominance of labile, hydrophilic compounds such as carbohydrates, amino acids and proteins. As such compounds are degraded more resistant aromatic moieties accumulate in solution resulting in a reduction in the degradability of DOM with composting time. This decrease in degradability was found to be highly correlated with microbial oxygen demand, and could have important implications in the evaluation of the composting process.  相似文献   

15.
Bioavailability of dissolved organic nitrogen in treated effluents.   总被引:2,自引:0,他引:2  
The research objective was to assess dissolved organic nitrogen (DON) bioavailability in wastewater effluents from a pilot-scale nitrification plant and a laboratory-scale total nitrogen (TN) removal plant. The DON bioavailability was assessed using a 14-day bioassay protocol containing bacterial and algal inocula. Nitrogen species, dissolved organic carbon, chlorophyll a, and biomass (as total suspended solids and culturable cell counts) concentrations were measured to assess DON bioavailability. The results showed an increase in algal chlorophyll a concentration, with a concurrent increase in algal biomass over time; increased bacterial counts and a decrease in DON concentration over time; and increased carbon-to-nitrogen ratio at the end of the 14-day bioassay, indicating effluent DON bioavailability to algae and bacteria. Approximately 18 to 61% of the initial DON in low-total-nitrogen wastewater effluent (TN = 4 to 5 mg/L) sample was bioavailable. The results show that bacteria and algae uptake and release DON during their growth.  相似文献   

16.
凝聚/絮凝过程中形成的絮体通常具有分形几何结构,导致絮体的密度、渗透性发生了变化,从而对于固液分离过程(沉淀、气浮和过滤)带来很大的影响。本文基于前人对于絮体分形的研究成果,建立了絮体与微气泡之间接触碰撞的动力学方程、絮体/微气泡聚集体在水中上升的分形速率方程。絮体与微气泡间的相对尺度和流态的不同会有不同的碰撞机制,相应的动力学方程式与絮体的分形维数也有不同的关系。  相似文献   

17.
Proton nuclear magnetic resonance (1H-NMR), UV absorbance and excitation-emission matrix (EEM) fluorescence spectroscopy were used to define the chemical characteristics of chromophoric dissolved organic matter (CDOM) in whole and C18 extracted rainwater. The average total recovery of fluorescence determined from the sum of extract and filtrate fractions relative to the whole was 86% suggesting that 14% of fluorescent CDOM in rainwater is comprised of very hydrophobic material that cannot be eluted from the column. Half the fluorescence of rainwater was recovered in the filtrate fraction which is important because it suggests that 50% of the chromophoric material present in precipitation is relatively hydrophilic. The average spectral slope coefficient was smaller in extracted samples (16.3 ± 9.0 μm?1) relative to whole samples (18.9 ± 2.8 μm?1) suggesting that the extracted material contains larger molecular weight material. Approximately one-third of the total dissolved organic carbon (DOC) in rainwater exists in the extract fraction suggesting that a large percentage of the uncharacterized DOC in rainwater can be accounted for by these hydrophobic macromolecular species. The fluorescence of extracted samples is strongly correlated with total NMR integration and is most sensitive to aromatic protons suggesting that molecules in this region are the most important in controlling the optical properties of rainwater. The lower removal efficiency of CDOM in rainwater relative to surface waters or the water-soluble fraction of aerosols during solid phase extraction (SPE) suggests that rainwater contains significantly more hydrophilic chromophoric compounds which are compositionally different than found in these other aquatic matrices.  相似文献   

18.
Relating dissolved organic matter fluorescence and functional properties   总被引:4,自引:0,他引:4  
Baker A  Tipping E  Thacker SA  Gondar D 《Chemosphere》2008,73(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

19.
Interactions between mercury and dissolved organic matter--a review   总被引:14,自引:0,他引:14  
Ravichandran M 《Chemosphere》2004,55(3):319-331
Dissolved organic matter (DOM) interacts very strongly with mercury, affecting its speciation, solubility, mobility, and toxicity in the aquatic environment. Strong binding of mercury by DOM is attributed to coordination of mercury at reduced sulfur sites within the organic matter, which are present at concentrations much higher than mercury concentrations found in most natural waters. The ability of organic matter to enhance the dissolution and inhibit the precipitation of mercuric sulfide, a highly insoluble solid, suggests that DOM competes with sulfide for mercury binding. This is confirmed by very high conditional stability constants for mercury-organic sulfur (RSHg+) complexes (10(25)-10(32)) recently reported in literature. DOM appears to play a key role in the photochemical reduction of ionic mercury to elemental mercury and subsequent reoxidation of elemental mercury to ionic mercury, thus affecting volatilization loss and bioavailability of mercury to organisms. DOM affects the production and bioaccumulation of methylmercury, the most bioaccumulative mercury species in fish.  相似文献   

20.
Dissolved hydrogen concentrations are used to characterize redox conditions of contaminated aquifers. The currently accepted and recommended bubble strip method for hydrogen sampling (Wiedemeier et al., 1998) requires relatively long sampling times and immediate field analysis. In this study we present methods for optimized sampling and for sample storage. The bubble strip sampling method was examined for various flow rates, bubble sizes (headspace volume in the sampling bulb) and two different H2 concentrations. The results were compared to a theoretical equilibration model. Turbulent flow in the sampling bulb was optimized for gas transfer by reducing the inlet diameter. Extraction with a 5 mL headspace volume and flow rates higher than 100 mL/min resulted in 95-100% equilibrium within 10-15 min. In order to investigate the storage of samples from the gas sampling bulb gas samples were kept in headspace vials for varying periods. Hydrogen samples (4.5 ppmv, corresponding to 3.5 nM in liquid phase) could be stored up to 48 h and 72 h with a recovery rate of 100.1+/-2.6% and 94.6+/-3.2%, respectively. These results are promising and prove the possibility of storage for 2-3 days before laboratory analysis. The optimized method was tested at a field site contaminated with chlorinated solvents. Duplicate gas samples were stored in headspace vials and analyzed after 24 h. Concentrations were measured in the range of 2.5-8.0 nM corresponding to known concentrations in reduced aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号