首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: During the last 30 years, changes in the size of Hawaiian monk seal populations at several locations have been associated with the amount and type of human disturbance. Recreational beach activities caused monk seals to alter their pupping and hauling patterns. Survival of pups in suboptimal habitats was low, leading to gradual population declines. During the last decade at Kure Atoll, the process has been reversed human disturbance on beaches has decreased and traditional pupping and hauling sites have been reestablished Subsequently, high survival rates of young seals, coupled with two successful enhancement programs for female pups, have led to dramatic changes in the age and sex composition of the population. Based on these changes, the monk seal population at Kure Atoll soon should begin to increase. Apparently small behavioral changes in such vital activities as feeding and reproduction can have large demographic consequences. Therefore, monitoring of endangered species should include data on habitat use and age and sex composition, as well as estimates of abundance.  相似文献   

2.
Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.  相似文献   

3.
Abstract: We used microsatellite DNA markers to investigate the maintenance of genetic diversity within and between samples of subpopulations (spanning five captive-bred generations) of the haplochromine cichlid Prognathochromis perrieri . The subpopulations are maintained as part of the Lake Victoria Cichlid species survival plan. Changes in the frequencies of 24 alleles, over four polymorphic loci, were used to estimate effective population size (   N e   ). Point estimates of N e ranged from 2.5 to 7.7 individuals and were significantly smaller than the actual census size (   N obs  ) for all subpopulations (32–243 individuals per generation), with the corresponding conservative N e   /  N obs ratios ranging from 0.01 to 0.12. Approximately 19% of the initial alleles were lost within the first four generations of captive breeding. Between-generation comparisons of expected heterozygosity showed significant losses ranging from 6% to 12% per generation. Seven private alleles were observed in the last sampled generation of four subpopulations, and analysis of population structure by F ST indicated that approximately 33% of the total genetic diversity is maintained between the subpopulations from different institutions. To reduce the loss of genetic variation, we recommend that offspring production be equalized by periodically removing dominant males, which will encourage reproduction by additional males. Consideration should also be given to encouraging more institutions to maintain populations, because a significant fraction of the genetic variation exists as among-population differences resulting from random differentiation among subpopulations.  相似文献   

4.
Coral reef fish generally have relatively sedentary juvenile and adult phases and a presumed highly dispersive pelagic larval phase, yet previous studies that have tried to relate pelagic larval duration (PLD) to population structure have given inconsistent results. In the present study, the population structures of two damselfishes, Stegastes fasciolatus and Dascyllus albisella, were examined using mitochondrial control region sequences. The two species have similar PLDs (∼25 and 27 days respectively), but consistently differ in their settlement preferences, habitat, and densities in populations throughout the Hawaiian Archipelago, from Hawaii north to Kure Atoll, and south to Johnston Atoll. Information on habitat preferences and population densities were collected between September 2000 and October 2002, and tissue samples for the genetic studies were collected between January and April 2004. Based on the differences in habitat and abundance of the two species, the expectation was that S. fasciolatus would have high genetic variability but little population structure compared to D. albisella, and this was largely confirmed. Stegastes fasciolatus had little population structure in most of the Hawaiian Islands, and D. albisella showed evidence of strong population structure throughout its range. An exception to this pattern was the large difference between the Kure Atoll population of S. fasciolatus and all others. These results suggest that the interaction of several biological factors (e.g. species-specific spawning habitat and season) with environmental factors (e.g. seasonal wind and current patterns) may have more influence on population structure than single life history characteristics, such as the PLD.  相似文献   

5.
Low Genetic Variability in the Hawaiian Monk Seal   总被引:1,自引:0,他引:1  
The Hawaiian monk seal (   Monachus schauinslandi) is a critically endangered species that has failed to recover from human exploitation despite decades of protection and ongoing management efforts designed to increase population growth. The seals breed at five principal locations in the northwestern Hawaiian islands, and inter-island migration is limited. Genetic variation in this species is expected to be low due to a recent population bottleneck and probable inbreeding within small subpopulations. To test the hypothesis that small population size and strong site fidelity has led to low within-island genetic variability and significant between-island differentiation, we used two independent approaches to quantify genetic variation both within and among the principal subpopulations. Mitochondrial control region and tRNA gene sequences (359 base pairs) were obtained from 50 seals and revealed very low genetic diversity (0.6% variable sites), with no evidence of subpopulation differentiation. Multilocus DNA fingerprints from 22 individuals also indicated low genetic variation in at least some subpopulations (band-sharing values for "unrelated" seals from the same island ranged from 49 to 73%). This method also provided preliminary evidence of population subdivision (  F'st estimates of 0.20 and 0.13 for two adjacent island pairs). Translocations of seals among islands may therefore have the potential to relieve local inbreeding and possibly to reduce the total amount of variation preserved in the population. Genetic variation is only one of many factors that determine the ability of an endangered species to recover. Maintenance of existing genetic diversity, however, remains an important priority for conservation programs because of the possibility of increased disease resistance in more variable populations and the chance that inbreeding depression may only be manifest under adverse environmental conditions.  相似文献   

6.
Abstract: The Hawaiian monk seal (Monachus schauinslandi) is one of the most critically endangered marine mammals. Less than 1200 individuals remain, and the species is declining at a rate of approximately 4% per year as a result of juvenile starvation, shark predation, and entanglement in marine debris. Some of these problems may be alleviated by translocation; however, if island breeding aggregates are effectively isolated subpopulations, moving individuals may disrupt local adaptations. In these circumstances, managers must balance the pragmatic need of increasing survival with theoretical concerns about genetic viability. To assess range‐wide population structure of the Hawaiian monk seal, we examined an unprecedented, near‐complete genetic inventory of the species (n =1897 seals, sampled over 14 years) at 18 microsatellite loci. Genetic variation was not spatially partitioned (w=?0.03, p = 1.0), and a Bayesian clustering method provided evidence of one panmictic population (K =1). Pairwise FST comparisons (among 7 island aggregates over 14 annual cohorts) did not reveal temporally stable, spatial reproductive isolation. Our results coupled with long‐term tag‐resight data confirm seal movement and gene flow throughout the Hawaiian Archipelago. Thus, human‐mediated translocation of seals among locations is not likely to result in genetic incompatibilities.  相似文献   

7.
Abstract: We investigated the conservation of genetic diversity during a restoration program for American shad ( Alosa sapidissima ) in Virginia ( U.S.A.). Restoration entailed capture of wild Pamunkey River shad broodstock followed by production and release of hatchery-reared fry to supplement the nearly extinct James River shad population. To assess the baseline genetic diversity of donor and recipient populations, we used five tri- and tetra-nucleotide microsatellite loci to test for genetic heterogeneity among yearly subsamples from both rivers and between early- and late-spawning shad from the donor population. Tests for allelic heterogeneity between James River and Pamunkey shad subsamples yielded no significant genetic differentiation (χ 2 = 14.72, p = 0.132 and χ 2 = 10.24, p = 0.440, respectively). We detected no significant genetic divergence between early- and late-spawning adults in Pamunkey River spawning aggregations in either year. The donor and recipient populations exhibited significant genetic differentiation (χ 2 = 27.4, p = 0.003), however, indicating that the stocking program carries a risk of outbreeding depression. Because the two river populations are genetically divergent, replenishment of the James population with Pamunkey fry may be detectable in the future as heterozygote deficits and linkage disequilibria in the James River population. In an analysis of broodstock and their hatchery-reared progeny, microsatellites proved efficient for family analysis, unambiguously determining the parentage of 100% of the hatchery-reared fry studied. Genetic analysis indicated that breeding procedures may result in high levels of reproductive variance.  相似文献   

8.
9.
Evaluating the Effectiveness of Corridors: a Genetic Approach   总被引:9,自引:0,他引:9  
Abstract: The effectiveness of corridors in maintaining dispersal in fragmented landscapes is a question of considerable conservation and ecological importance. We tested the efficacy of corridors as residual landscape structures in maintaining population structure in the red-backed vole ( Clethrionomys gapperi ), a closed-canopy specialist, and the deer mouse (   Peromyscus maniculatus ), a habitat generalist. In coniferous forests managed for timber production in northeastern Washington, we sampled pairs of populations in three landscape classes: (1) contiguous landscapes, in which sites were located completely within a matrix of closed-canopy forest; (2) corridor landscapes, in which sites were connected by a corridor of closed-canopy forest; and (3) isolated landscapes, in which sites were separated from one another by clearcut or young regeneration stands. For each species, we used four microsatellite loci to quantify genetic distance between population pairs. Nei's genetic distance (   D s  ) increased from smallest to largest in the order of contiguous, corridor, and isolated landscapes for C. gapperi. For P. maniculatus, genetic distances across landscape configurations were not significantly different. The differences between the two species indicate that they respond differently to the presence of forest corridors. In managed forests, corridors between unlogged habitats appear to maintain higher population connectivity for C. gapperi than landscapes without corridors.  相似文献   

10.
We equipped individual tiger (Galeocerdo cuvier Péron and Lesueur, 1822) and Galapagos (Carcharhinus galapagensis Snodgrass and Heller, 1905) sharks with both acoustic and satellite transmitters to quantify their long-term movements in the Papahanaumokuakea Marine National Monument (Northwestern Hawaiian Islands). Tiger sharks exhibited two broad patterns of behavior. Some individuals were detected at French Frigate Shoals (FFS) year round, whereas others visited FFS atoll in summer to forage on fledging albatross, then swam thousands of kilometers along the Hawaiian chain, or out into open ocean to the North Pacific transition zone chlorophyll front, before returning to FFS in subsequent years. These patterns suggest tiger sharks may use cognitive maps to navigate between distant foraging areas. Different patterns of spatial behavior may arise because cognitive maps are built up through individual exploration, and each tiger shark learns a unique combination of foraging sites. Galapagos shark detections were all associated with FFS, suggesting these sharks may be more resident around oceanic islands. Both Galapagos and tiger sharks primarily used the mixed layer (<100 m depth) and made occasional deeper dives through the thermocline down to 680 m. Results show reef-associated sharks utilize a wide variety of habitats ranging from shallow atoll lagoons to deep reefs and open ocean and may provide important trophic links between these habitats.  相似文献   

11.
The Chinese mitten crab Eriocheir sinensis is an indigenous and economically important species in China, but can also be found as invasive species in Europe and America. Mitten crabs have been exploited extensively as a food resource since the 1990s. Despite its ecological and economic importance, the genetic structure of native mitten crab populations is not well understood. In this paper, we investigated the genetic structure of mitten crab populations in China by screening samples from ten locations covering six river systems at six microsatellite loci. Our results provide further evidence that mitten crabs from the River Nanliujiang in Southern China are a genetically differentiated population within the native range of Eriocheir, and should be recognized as a separate taxonomic unit. In contrast, extremely low levels of genetic differentiation and no significant geographic population structure were found among the samples located north of the River Nanliujiang. Based on the reproductive biology of mitten crabs and the geography of their habitat we argue that both natural and human-mediated gene flow are unlikely to fully account for the similar allele frequency distributions at microsatellite loci. Large population sizes of mitten crabs suggest instead that a virtual absence of genetic drift and significant homoplasy of microsatellite alleles have contributed to the observed pattern. Furthermore, a coalescent-based maximum likelihood method indicated a more than two-fold lower effective population size of the Southern population compared to the Northern Group and low but significant levels of gene flow between both areas.  相似文献   

12.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

13.
Abstract: To assess the genetic consequences for a Neotropical tree of the loss of its main seed disperser, we compared the genetic structure of Inga ingoides in a site where the spider monkey (Ateles paniscus) was abundant and a site where it had been eliminated by subsistence hunting. Gene flow should be reduced in the site where the spider monkey is absent, and there should be a corresponding subpopulation differentiation of seedlings within the spatial range of the movements of these primates in the absence of between-site differences in allelic frequencies. At the microhabitat (  family) scale, seedlings growing under parent plants should be genetically more related in the absence of the spider monkey than in its presence. Subpopulation differentiation was smaller where the spider monkey was present (  four loci, FST = 0.011) than where it was absent (  four loci, FST = 0.053) for the first year of study, but not for the second year (three loci, FST = 0.005 vs. 0.003). The number of alleles in common among seedlings growing under parent plants was smaller in the presence of the spider monkey than in its absence, showing family genetic structure in the first generation for both years of study ( Mann-Whitney, z = −2.17, p = 0.03 and z = −2.72, p = 0.006 for 1996 and 1997, respectively). This family genetic structure in the first generation should accelerate the development of population genetic structure. Development of genetic structure might result in demographic changes, one of which would be a fitness reduction if the species were self-incompatible, as suggested for Inga by available evidence. Large birds and mammals are the main targets of subsistence hunting in the Neotropics. Extinction of seed-dispersing frugivores may result in pronounced changes in the demographic and genetic structure of tree species in Neotropical forests.  相似文献   

14.
Several small populations of Hawaiian monk seals ( Monachus schauinslani ) exhibit male-biased adult sex ratios and "mobbing," an aggressive behavior in which adult males injure and often kill adult females and immature seals of both sexes during mating attempts. Mobbing appears to be limiting the growth of some populations of this endangered species. The frequency of mobbing deaths appears to increase as a population's sex ratio becomes increasingly male-biased, although the exact relationship between these two variables (the mobbing response) is unknown. We developed a stochastic demographic model of a small Hawaiian monk seal population using several different assumptions about the mobbing response. We used the model to explore the origins of male-biased sex ratios in monk seal populations and to determine whether it was possible, given the lack of data on the mobbing response, to evaluate the probable effects of alternative management strategies to address the mobbing problem. Small populations (100 to 200 seals) and those with slower growth rates were more likely to develop male-biased adult sex ratios. Almost all of our modeling scenarios supported the immediate removal of males from populations where mobbing occurs. Our conclusions were relatively unaffected when the assumptions regarding the mobbing response were varied. Thus, a model was helpful even when apparently crucial data were unavailable.  相似文献   

15.
Understanding how population density influences mating systems may lead to important insights into the plasticity of breeding behavior, but few natural systems allow for such studies. Antarctic fur seals (Arctocephalus gazella) provide an interesting model system because they breed in colonies of varying densities. Previous studies have largely focused on a high-density site at Bird Island, South Georgia. Here, 13 highly polymorphic microsatellite loci were used to conduct a genetic analysis of a low-density breeding colony of this species at Livingston Island, approximately 1,600 km south of South Georgia. The majority of adults seen ashore (n?=?54) were sampled together with every pup born (n?=?97) over four consecutive years. Paternities were confidently assigned for 34 out of the 97 pups. Two out of 23 sampled males accounted for the paternity of 28 % of all pups sampled during the study and 82 % of the pups with an assigned father. Moreover, a full likelihood pedigree inference method assigned a further eight paternities to a single unsampled male seal that is inferred to have held a territory during the season before the study began. The most successful males in our study easily surpassed the previous record for the total number of pups sired per male seal for the species. Furthermore, we identified two triads of full siblings implying that their parents remated in three consecutive years. These findings suggest that territorial male fur seals may achieve greater success in monopolizing access to breeding females when population density is relatively low.  相似文献   

16.
Impact of a kaolin clay spill on a coral reef in Hawaii   总被引:1,自引:0,他引:1  
On April 27, 1980, the Greek freighter Anangel Liberty went aground on the reef at French Frigate Shoals, a National Wildlife Refuge in the Hawaiian Islands. The vessel was refloated with no major damage or fuel spillage after 2 200 tons (2 200 000 kg) of koalin cargo had been jettisoned on the reef. Huge plumes of suspended clay raised major concern over the possibility of widespread ecological damage. However, field investigations conducted 14 d after the kaolin was dumped revealed that environmental impact waw very minor and highly localized; it was evident that most of the kaolin had been suspended and removed from the area. The only significant damage was a 2 to 3 m deep channel plowed through the reef by the freighter. Within 50 m of both sides of the channel, some coral was smothered and colonies of Pocillopora spp. were alive but slightly bleached. Beyond 50 m there were no apparent impact, nor did any clay settle on the bottom. This incident illustrates that some events which initially appear to have potential pollutant impact do not produce significant and irreversible environmental changes and emphasizes the need to analyze such events on a case-by-case basis.Hawaii Institute of Marine Biology Contribution No. 610  相似文献   

17.
Human-made structures are increasingly found in marine coastal habitats. The aim of the present study was to explore whether urban coastal structures can affect the genetic variation of hard-bottom species. We conducted a population genetic analysis on the limpet Patella caerulea sampled in both natural and artificial habitats along the Adriatic coast. Five microsatellite loci were used to test for differences in genetic diversity and structure among samples. Three microsatellite loci showed strong Hardy–Weinberg disequilibrium likely linked with the presence of null alleles. Genetic diversity was significantly higher in natural habitat than in artificial habitat. A weak but significant differentiation over all limpet samples was observed, but not related to the type of habitat. While the exact causes of the differences in genetic diversity deserve further investigation, these results clearly point that the expansion of urban structures can lead to genetic diversity loss at regional scales.  相似文献   

18.
 We describe three highly polymorphic microsatellite loci which have been isolated from the giant tiger prawn Penaeus monodon. The number of alleles present among 312 samples at the loci Pmo9, Pmo25 and Pmo27 were 84, 34 and 35, respectively, with heterozygosities all >90%. Analyses of the distribution of length variation at three microsatellite loci among five Australian P. monodon populations revealed strong differentiation between populations from the west and those from the northern and eastern coasts. Tests for population differentiation (F st) values and an analogous measure for microsatellite loci (R st) all demonstrated that Western Australian P. monodon are a separate genetic stock which exhibits reduced genetic variation relative to the other populations. Reduced variability is consistent with a recent population bottleneck or colonization by a small founding population from the east when sea links between Indonesia, New Guinea and Australia were re-established following the last ice age. The results of this study are in agreement with previous surveys of P. monodon conducted with allozymes and mtDNA. Received: 18 December 1998 / Accepted: 27 August 1999  相似文献   

19.
We analyzed the amount and distribution of genetic variation in Baptisia arachnifera Duncan to develop a sampling strategy for ex situ research. Baptisia arachnifera is an endangered plant species endemic to the coastal plain of Georgia (U.S.) where all populations are within 16 km of each other. A reduction in numbers of individuals has been observed during the last 50 years. Baptisia arachnifera was polymorphic at 24% of the 37 loci examined with an average of 1.32 alleles per locus. The genetic diversity index was relatively low ( He = 0.097) as expected for endemic species. Populations were in Hardy-Weinberg equilibrium, suggesting that the species is outcrossing. Consistent with this conclusion is the observation that the majority (approximately 90%) of the genetic variation present in the species is found within individual populations. Indirect evidence of gene flow between populations was detected (   Nm = 2.35). The close proximity of the populations and the recent reduction in population sizes suggest that the populations surveyed may be fragments of a once more continuous gene pool. Based on the observed distribution of genetic diversity among populations (GST = 0.096), sampling two populations would capture 99% of the allozyme diversity surveyed. Allozyme data were used to determine which 2 of the 10 populations surveyed should be sampled to maximize the ex situ conservation of genetic diversity. Although the paper-producing companies that own most of the land where Baptisia arachnifera occurs are modifying their harvesting techniques, the species could become extinct without more effective management and preservation efforts.  相似文献   

20.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号