首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The peri-urban soils of Huelva, one of the first industrial cities in Spain, are subject to severe pollution problems primarily due to past poor management of industrial wastes and effluents. In this study, soil cores were collected in seven sites potentially contaminated with toxic chemicals arising from multiple anthropogenic sources, in order to identify trace elements of concern and to assess human health risks associated with them. In most soil core samples, total concentrations of As (up to 4,390 mg kg−1), Cd (up to 12.9 mg kg−1), Cu (up to 3,162 mg kg−1), Pb (up to 6,385 mg kg−1), Sb (up to 589 mg kg−1) and Zn (up to 4,874 mg kg−1) were by more than one order of magnitude greater than the site-specific reference levels calculated on the basis of regional soil geochemical baselines. These chemicals are transferred from the hazardous wastes, mainly crude pyrite and roasted pyrite cinders, to the surrounding soils by acid drainage and atmospheric deposition of wind-blown dust. Locally, elevated concentrations of U (up to 96.3 mg kg−1) were detected in soils affected by releases of radionuclides from phosphogypsum wastes. The results of the human health risk-based assessment for the hypothetical exposure of an industrial worker to the surface soils indicate that, in four of the seven sites monitored, cancer risk due to As (up to 4.4 × 10−5) is slightly above the target health risk limit adopted by the Spanish legislation (1 × 10−5). The cumulative non-carcinogenic hazard index ranged from 2.0 to 12.2 indicating that there is also a concern for chronic toxic effects from dermal contact with soil.  相似文献   

2.
Hg transfer from contaminated soils to plants and animals   总被引:1,自引:0,他引:1  
Understanding the transfer of mercury (Hg) from soil to crops is crucial due to Hg toxicity and Hg occurrence in terrestrial systems. Previous research has shown that available Hg in soils contributes to plant Hg levels. Plant Hg concentrations are related to soil conditions and plant characteristics. Mechanistic models describing such soil–plant interactions are however difficult to quantify. Here we performed a field study in agricultural, mining and industrial areas in Portugal to evaluate potential food chain risks. The uptake of Hg by Italian ryegrass, ryegrass, orchard grass, collard greens and rye was measured to calculate daily intakes (DI) of Hg for cows and sheep grazing. A total of 136 soil samples and 129 plant samples were analysed. Results show that total Hg concentrations ranged from 0.01 to 98 mg kg−1 in soils; 0.01–5.4 mg kg−1 in shoots and 0.01–42 mg kg−1 in roots. Calculated DI ranged from 0.18 to 132 mg d−1 for cows, and from 0.028 to 23 mg d−1 for sheep. In 27 grassland sites, daily intakes exceeded the acceptable daily intake of both cows and sheep in view of food safety considering Hg in animal kidneys evidencing potential risks to human health. The transfer of Hg from soil to crops was described using empirical Freundlich-type functions. For ryegrass, orchard grass and collard greens, the soil-to-root or soil-to-shoot transfer of Hg appeared to be controlled by the total soil Hg concentration and levels of Alox and Feox. Empirical functions allowed us to obtain realistic estimates of Hg levels in crops and can be used as an alternative to mechanistic models when evaluating food chain risks of Hg contamination in agricultural soils.  相似文献   

3.
The Domingo Rubio tidal channel (Palos de la Frontera, Huelva, Spain) is an estuary located in the mouth of the Tinto River. The estuary is affected by different sources of pollution (waters of the Tinto River, contaminated with trace elements from the Iberian Pyrite belt, and effluent from the Huelva chemical industrial area). Soil and the most frequent plant species were collected in 2004 and 2006 at six different locations on the estuary. In general, N-Kjedahl, Total Organic Carbon values, salinity and contamination (total trace elements up to 1,000 mg kg−1 As, 6 mg kg−1 Cd, 2,500 mg kg−1 Cu, 1,900 mg kg−1 Pb and 1,300 mg kg−1 Zn) tended to increase downstream of the tidal channel. Soil biochemical properties were not negatively affected either by the high salinity or by trace element contamination. Despite the high values of the trace elements, analysed plant samples showed that Cu was the only metal that could be a serious risk for the food chain.  相似文献   

4.
The Bursa region of Turkey has important agricultural production areas. Animal producers use agricultural fields in this region for disposal of manure. Therefore, in this study the concentrations of the seven trace metals Zn, Mn, Cu, Ni, Cr, Pb, and Cd in 324 animal feed and manure samples from three dairy cattle, three laying hens farms, and three broiler farms have been determined. The average concentrations in dairy cattle manure were 130 (Zn), 150 (Mn), 4.2 (Cu), 6.8 (Ni), 44 (Cr), 0.8 (Pb), and 0.09 (Cd) mg kg?1 dry weight; for laying hens manure 240 (Zn), 190 (Mn), 0.63 (Cu), 3.8 (Ni), 30 (Cr), 0.55 (Pb), and 0.12 (Cd) mg kg?1 dry weight; and for broiler manure 240 (Zn), 280 (Mn), 1.4 (Cu), 3.8 (Ni), 35 (Cr), 3.4 (Pb), and 0.16 (Cd) mg kg?1 dry weight. The calculated trace metal loading rate indicated that manure application might pose a potential risk to agricultural fields according to the current soil protection regulations of Turkey.  相似文献   

5.
For monitoring and risk assessment, levels and distributions of Σ29 PCBs in paddy soil samples collected from Gwangyang (10 sites) and Ulsan (20 sites), heavily industrialized cities in Korea, were investigated using high-resolution gas chromatography/high-resolution mass spectrometry. Overall, total concentrations of Σ29 PCBs in Gwangyang (216.4–978.6 pg g?1 dw) and Ulsan (273.8–1824.1 pg g?1 dw) were higher than those (106.6–222.6 pg g?1 dw) in agricultural soil from Anseong in Korea. The TEQ (toxic equivalency) values from Gwangyang (0.06–0.40 ng TEQ kg?1 dw) and Ulsan (0.06–0.22 ng TEQ kg?1 dw) were higher than those (0.04–0.11 ng TEQ kg?1 dw) in Anseong but lower than the WHO threshold level (20 ng TEQ kg?1). However, one of the most toxic congeners, PCB 126, gave the highest concentration, possibly posing a risk to the biota. Seven indicator PCB congeners contributed to 50–80% of the total concentration of Σ29 PCBs, indicating the 7 PCBs can be used as valuable indicators for monitoring. The principal component analysis and cluster analysis for the homologue profiles of PCBs indicated that all the samples from both cities had the similar PCB contamination patterns, and the major sources of the PCB contamination were most likely from the usage of Aroclor 1254 than those of Aroclors 1242 and 1260. These PCB technical mixtures were possibly significantly used by various industries including iron and steel industries in Gwangyang and petrochemical and shipbuilding industries in Ulsan.  相似文献   

6.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

7.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

8.
Cd concentrations in mobile phases of soil are more representative than total Cd concentration for estimating Cd bioavailability, physicochemical reactivity and mobility. In this study, selective sequential extraction procedures were used to determine Cd in different soil phases. Soil samples and plants grown in these soils were collected from a serpentine and copper-mining area in Maden-Elazig-Turkey. The extracted fractions were exchangeable/carbonate, reducible-iron/manganese oxides, oxidizable-organic matter and sulfides, and residual phases except silicates. Concentrations of Cd in soils and plant samples were determined by flame atomic absorption spectrometry and inductively coupled plasma-mass spectrometry. We found that Cd concentrations in the EDTA and NH2OH·HCl extracts are higher in most soil samples compared to the other extracts. We conclude that Cd levels in mobile phases are unexpectedly high. The observed Cd concentrations are in ranges of 0.03–3.4 mg kg−1 for soil and 0.02–2.5 mg kg−1 for plant parts. The percentages of cadmium up to 56% in exchangeable and carbonates fractions were observed to be significantly higher than in those values less than 2% reported in literature. This study has shown that the modified extraction method can be usefully applied to determine Cd concentrations in potentially mobile phase of soil. Furthermore, it was concluded that Brassicasea and Rumex leaves can be used as hyperaccumulator plants because their translocation factor and/or enrichment coefficient values were found to be higher than 1.0.  相似文献   

9.

The present study aimed to elucidate the remediation potential of visibly dominant, naturally growing plants obtained from an early colonized fly ash dump near a coal-based thermal power station. The vegetation comprised of grasses like Saccharum spontaneum L., Cynodon dactylon (L.) Pers., herbs such as Tephrosia purpurea (L.) Pers., Sida rhombifolia L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Chromolaena odorata (L.) King & H.E. Robins along with tree saplings Butea monosperma (Lam.) Taub. The growth of the vegetation improved the N and P content of the ash. Average metal concentrations (mg kg?1) in the ash samples and plants were in order Mn (345.1)?>?Zn (63.7)?>?Ni (29.3)?>?Cu (16.8)?>?Cr (9.9)?>?Pb (1.7)?>?Cd (0.41) and Cr (58.58)?>?Zn (52.74)?>?Mn (39.09)?>?Cu (10.71)?>?Ni (7.45)?>?Pb (5.52)?>?Cd (0.14), respectively. The plants showed fly ash dump phytostabilization potential and accumulated Cr (80.19–178.11 mg kg?1) above maximum allowable concentrations for plant tissues. Positive correlations were also obtained for metal concentration in plant roots versus fly ash. Saccharum spontaneum showed highest biomass and is the most efficient plant which can be used for the restoration of ash dumps.

  相似文献   

10.
Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg−1 near the mine in a regional background of 1–16 mg kg−1. Total Cr concentrations were between 18 and 740 mg kg−1 near the mine in a regional background of 26–143 mg kg−1. Total Pb concentrations were between 12 and 430 mg kg−1 near the mine in a regional background of 9–23 mg kg−1. Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.  相似文献   

11.
The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10?6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10?5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.  相似文献   

12.
The concentrations of four essential (Ca, Mg, Zn, and Cu) and two nonessential elements (Pb and Cd) in feathers and kidneys, livers, gut walls, and muscles of eight carcasses of migratory red-crowned cranes (Grus japonensis) from Zhalong Wetland, northeastern China, were examined. The concentrations of Cd in the feathers were between 0.4 mg kg?1 dry weight (dw) and 3.1 mg kg?1 dw, in the livers between 0.4 and 4.4 mg kg?1 dw, the maximum of which exceeded a level considered to be environmental exposure risk (i.e., 3 mg kg?1 dw in the liver or kidney). High Pb levels (0.4–3.2 mg kg?1 dw, with an average of 1.8 mg kg?1) were also detected in livers, which exceeded a level considered toxicosis in birds (1.7 mg kg?1 dw). Pb and Cd had the highest scores in principal component analysis. Relatively high Pb and Cd concentrations in the migratory cranes were thought to be associated with their habitat and prey.  相似文献   

13.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

14.
In an effort to address public concerns of the long-term stability and ecological risk reduction of Cu and Cd in a farmland located at the Guixi, Jiangxi Province, China, containing ~ 800?mg?kg?1 Cu and 0.8?mg?kg?1 Cd soil, were treated in situ by attapulgite, apatite, montmorillonite and lime at the rate: 10, 10, 10 and 4?g?kg?1 soil, respectively. Field experiment consisted of 2?×?3-m plots arranged in a randomised complete block design with each treatment. Soil and plant samples were collected in sixth years post-treatments and analysed for Cu and Cd bioaccessibility, chemical fraction and Cu, Cd concentration in plant tissue. The results indicated that the apatite and lime treatments significantly reduced bioaccessible and exchangeable fractions Cu and Cd in the soil at sixth years post the treatments. Cu and Cd concentration in plant tissue was positively related to the bioaccessibility of Cu and Cd. The treatment used 10?g apatite kg?1 soil appeared to be most effective for overall risk reduction. The Cu and Cd stabilisation and risk reduction by the apatite treatments were accomplished by the induced transformation of labile Cu and Cu species to relatively insoluble forms. This study illustrated that in situ Cu and Cd stabilisation by apatite would be long-term and ecologically safe, which could safeguard human health and ecosystem from Cu and Cd contamination in mining areas.  相似文献   

15.

The River Nile is the primary source of freshwater for drinking, irrigation, and industrial purposes in Egypt. Thus, the water quality in this river concerns the health of local inhabitants. The present study reveals seasonal variations of various physicochemical and heavy metals parameters and microbial load of water at 15 sites from Qena to Sohag cities, Egypt. The water is fresh with TDS?≤?270 and 410 mg L?1 in summer and winter, respectively. Fe, Mn, Cd, Cr, Cu, Ni, and Zn concentrations were within drinking water specification in both seasons except Cr and Cd in summer. Viable numbers of total coliform, fecal coliform, and fecal streptococci were recorded in both seasons with fecal streptococci's disappearing in winter. The concentrations of salts and ions in winter were higher than summer due to decreased water quantity and flow rate in this season. On the other hand, heavy metals and bacteria were higher in summer owing to the rain and weathering of upstream rocks and increasing of human activities during the summer. The calculated water quality index (WQI) depicted that the chemical quality of water was poor for drinking and treatment, especially biological treatment, which is required before the water is supplied for drinking. Human health risk assessment factors such as probable daily intake, hazard quotient, and carcinogenic risk indicated high risks of Cr, Cd, and Ni for adults and children in both seasons. The non-carcinogenic and carcinogenic risks are mainly posed by Cr. The WQI values for the other water uses indicated the marginal quality for aquatic life, fair for irrigation, and fair in summer to good in winter for livestock consumption. The irrigation water quality parameters indicated that the water could be used to irrigate all soils and crops except the hazard of biological contamination. The water–rock interaction controls water chemistry besides the contribution of human activities. The agricultural, industrial, and municipal wastewaters were the main contributors to water pollution and should be treated before discharge into the Nile River. Source and drinking water should be monitored continuously to prevent related human waterborne diseases.

  相似文献   

16.
This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between?<?0.01–2.54, 1.30–27.41 and?<?0.01–62.8 µg kg?1, respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ?<?1.0) and the acceptable distribution range of ILCR (10?6–10?4). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.  相似文献   

17.
The concentration and potential ecological risk of Mn, Zn, Cu, and Cd in the surface soils (0–30?cm) belonging to 12 soil profiles and 4 soil types (Vertisols, Chernozems, Calcisols, and Cambisols) from the cultivated soils and the corresponding uncultivated soils were investigated. Long-term cultivation caused a considerable build-up diethylene-triamine pentaacetic acid (DTPA)-extractable Mn (7–55%), and Cd (12–31%) as well as the total form of Zn (3–14%), Cu (8–25%), and Cd (33–78%) in all soil types. Following long-time cropping, total Zn (mean?=?73?mg?kg?1), Cu (mean?=?33?mg?kg?1), and Cd (mean?=?3.14?mg?kg?1) and DTPA Zn (mean?=?1.2?mg?kg?1) and Cu (mean?=?2.44?mg?kg?1) were below their maximum allowable limits. However, the average amount of DTPA Cd in the tilled soils (min?=?0.4, max?=?0.75, mean?=?0.55?mg?kg?1) was above its maximum permissible limit mainly due to the over application of phosphate fertilisers and the pesticides. Considering the potential ecological risk (RI) assessment of the cultivated soils (min?=?44, max?=?70, mean?=?54), the soil types were categorised as low (RI?≤?50) to moderate (50?相似文献   

18.
This study was designed to investigate heavy metal (Cu, Zn, Pb, and Cd) contamination levels of soils, vegetables, and rice grown in the vicinity of the Dabaoshan mine, south China. The concentration of Cu, Zn, Pb, and Cd in paddy soil exceeded the maximum allowable concentrations for Chinese agricultural soil. The heavy metal concentrations (mg kg−1, dry weight basis) in vegetables ranged from 5.0 to 14.3 for Cu, 34.7 to 170 for Zn, 0.90 to 2.23 for Pb, and 0.45 to 4.1 for Cd. The concentrations of Pb and Cd in rice grain exceeded the maximum permissible limits in China. Dietary intake of Pb and Cd through the consumption of rice and certain vegetable exceeded the recommended dietary allowance levels. The status of heavy metal concentrations of food crops grown in the vicinity of Dabaoshan mine and their implications for human health should be further investigated.  相似文献   

19.
中国南方稻田土壤汞含量及潜在危害评价   总被引:1,自引:0,他引:1  
选择我国南方水稻主产区安徽、浙江、湖南、湖北以及广西5个省,采集213个稻田土壤样品,探究我国南方稻田土壤中汞的空间分布特征与土壤理化参数(如p H值和有机质)的相关关系及汞富集的潜在危害。结果表明:不同省份的稻田土壤汞含量存在显著的差异(P0.05,n=213),含量范围是0.029~0.326 mg·kg~(-1)(干重),平均值为(0.094±0.036)mg·kg~(-1),与农用地土壤环境质量标准0.30 mg·kg~(-1)(GB15618—1995)相比,除湖北省以外均有轻度汞污染。Pearson相关性分析表明,稻田土壤中的汞含量与有机质含量呈显著正相关关系(P0.01,r=0.445),说明适度偏高的有机质有利于土壤汞的富集。不同省份稻田土壤潜在危害等级除浙江省外均在轻微到中等的范围内,浙江省的为强等级。  相似文献   

20.
The use of higher plants to remediate contaminated land is known as phytoremediation, a term coined 15 years ago. Among green technologies addressed to metal pollution, phytoextraction has received increasing attention starting from the discovery of hyperaccumulator plants, which are able to concentrate high levels of specific metals in the above-ground harvestable biomass. The small shoot and root growth of these plants and the absence of their commercially available seeds have stimulated study on biomass species, including herbaceous field crops. We review here the results of a bibliographical survey from 1995 to 2009 in CAB abstracts on phytoremediation and heavy metals for crop species, citations of which have greatly increased, especially after 2001. Apart from the most frequently cited Brassica juncea (L.) Czern., which is often referred to as an hyperaccumulator of various metals, studies mainly focus on Helianthus annuus L., Zea mays L. and Brassica napus L., the last also having the greatest annual increase in number of citations. Field crops may compensate their low metal concentration by a greater biomass yield, but available data from in situ experiments are currently very few. The use of amendments or chelators is often tested in the field to improve metal recovery, allowing above-normal concentrations to be reached. Values for Zn exceeding 1,000 mg kg−1 are found in Brassica spp., Phaseolus vulgaris L. and Zea mays, and Cu higher than 500 mg kg−1 in Zea mays, Phaseolus vulgaris and Sorghum bicolor (L.) Moench. Lead greater than 1,000 mg kg−1 is measured in Festuca spp. and various Fabaceae. Arsenic has values higher than 200 mg kg−1 in sorghum and soybean, whereas Cd concentrations are generally lower than 50 mg kg−1. Assisted phytoextraction is currently facilitated by the availability of low-toxic and highly degradable chelators, such as EDDS and nitrilotriacetate. Currently, several experimental attempts are being made to improve plant growth and metal uptake, and results are being achieved from the application of organic acids, auxins, humic acids and mycorrhization. The phytoremediation efficiency of field crops is rarely high, but their greater growth potential compared with hyperaccumulators should be considered positively, in that they can establish a dense green canopy in polluted soil, improving the landscape and reducing the mobility of pollutants through water, wind erosion and water percolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号