首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplankton standing crop (chlorophyll a) and primary productivity were recorded, and zooplankton biomass was estimated in the two large bays of Australia, the Great Australian Bight on the south coast (December, 1965) and the Gulf of Carpentaria on the north coast (December, 1968). In the Gulf of Carpentaria, the phytoplankton standing crop (average, 27.3 mg chlorophyll a m-2) and primary productivity (average, 133.1 mg C m-2 h-1), as well as zooplankton biomass (average, 305.3 mg wet weight m-3) are much higher than in the Great Australian Bight (12.1 mg chlorophyll a m-2, 18.2 mg C m-2 h-1, 7.1 mg wet weight m-3, respectively). The unexpectedly low productivity values in the Great Australian Bight are attributable to environmental conditions of this bay, which obtains neither replenishment of nutrients from the land nor receives upwelling of deep water.  相似文献   

2.
Orthophosphate uptake by a natural estuarine phytoplankton population was estimated using two methods: (1) 32P uptake experiments in which filters of different pore sizes were used to separate plankton size-fractions; (2) 33P autoradiography of phytoplankton cells. Results of the first method showed that plankton cells larger than 5 m were responsible for 2% of the total orthophosphate uptake rate. 98% of the total uptake rate occurred in plankton composed mostly of bacteria, which passed the 5 m screen and were retained by the 0.45 m pore-size filter. There was no orthophosphate absorption by particulates in a biologically inhibited control containing iodoacetic acid. Orthophosphate uptake rates of individual phytoplankton species were obtained using 33P autoradiography. The sum of these individual rates was very close to the estimated rate of uptake by particulates larger than 5 m in the 32P labelling experiment. Generally, smaller cells were found to have a faster uptake rate per m3 biomass than larger cells. Although the nannoplankton constituted only about 21% of the total algal biomass, the rate of phosphate uptake by the nannoplankton was 75% of the total phytoplankton uptake rate. Results of the plankton autoradiography showed that the phosphate uptake rate per unit biomass is a power function of the surface: volume ratio of a cell; the relationship is expressed by the equation Y=2x10-11 X 1.7, where Y is gP m-3 h-1 and X is the surface: volume ratio. These results lend support to the hypothesis that smaller cells have a competitive advantage by having faster nutrient uptake rates.  相似文献   

3.
4.
Monthly trawl surveys were performed in 1989 in North Bay and South Bay of St Vincent (New Caledonia) with both a shrimp trawl and fish trawl to produce a reference standard of the natural variability of an unexploited tropical soft-bottom fish assemblage. A total of 230 species belonging to 62 families were recorded. The mean density and biomass were 0.18 fishes m-2 and 4.31 g m-2, respectively. The major variations were explained by spatial factors. Species richness, density and biomass were greater in South Bay (204 species, 0.26 fishes m-2 and 5.90 g m-2) than in North Bay (105 species, 0.10 fishes m-2 and 2.71 g m-2), 34% of the species being present in both areas. The North Bay assemblage was characterized by four abundant benthic species (Saurida undosquamis, Gerres ovatus, Secutor ruconius and Upeneus moluccensis) and by numerous pelagic species (Carangidae, Sphyraenidae and Scombridae). The South Bay assemblage was characterized by several Mullidae, Bothidae and Balistidae, and by some rare species usually found on coral reefs (Pomacentridae and Chaetodontidae). These differences were induced by the physical and benthic characteristics of the two bays. North Bay was an homogeneous, confined, deposit area with few benthic organisms, whereas the substrate was more heterogeneous and the benthic organisms more diversified and abundant in South Bay, which was connected to the adjacent reef lagoon. Species richness remained stable in time, except in January when a hurricane disturbed the environment. Seasonal tendencies in species composition were evidenced in North Bay, with an autumn-winter structure opposed to a spring-summer structure, and characterized by the relative importance of the major species. No seasonal tendencies were observed in the organization of the South Bay assemblage. Nevertheless, mean density and biomass were at a minimum in summer in both bays; maxima occurred in winter. Biomass was negatively correlated to both temperature and rainfall, and reflected the population variations of the main species, particularly their reproductive migrations. Thus, the soft-bottom fish assemblages were strongly organized spatially in New Caledonia, but remained relatively stable over time.  相似文献   

5.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

6.
A quantitative assessment of drifting net plankton crossing a reef-flat biotope was obtained on a Caribbean coral reef. The spatial distribution and abundance of plankton were sampled to provide estimates of the removal of this potential food resource by suspension-feeding populations. Sampling was largely confined to the reef flat and adjacent waters of Laurel Cay, a flourishing coral reef present on the insular shelf off southwestern Puerto Rico. A prior study provides information on the meteorological and hydrographic characteristics of this area. Evidence for plankton accrual was found in the quantitative depletion of qualitatively similar populations sampled downstream of densely populated reef communities. Numerically, the diatom crop was reduced by 91% and zooplankton by 60% in water streaming off the reef. Significant diel and seasonal variations in plankton abundance were obcerved, as well as notable differences in volume flow, the latter closely related to the local wind regime. A time course of net plankton accrual was calculated, taking into account these various factors. During the summer season (July–August), when zooplankton was relatively abundant and water movement over the reef vigorous, the total gain from plankton reached 0.25 gC/m2/day; 75% of this occurred during a 4 h period at sunrise and sunset. Plankton retained on the reef flat in January of February and in September was around 0.1 g C/m2/day. Zooplankton biomass contributed the greatest share, exceeding that of diatoms by a factor of 10 during the day and 42 in the early evening. A mean annual accrual of 0.18 g C/m2/day is equivalent to 4 to 13% of net community metabolism.  相似文献   

7.
K. H. Mann 《Marine Biology》1972,14(3):199-209
The growth of the seaweeds Laminaria longicruris, L. digitata and Agarum cribrosum were followed by SCUBA divers for two years, by punching holes 10 cm from the junction of stipe and blade, and recording at intervals the distance the holes had moved. As the holes approached the tip of the blade, new holes were punched at the base. It was found that the blades behaved like moving belts of tissue, eroding at the tips while growing at the bases, so that a total year's growth amounted to 1 to 5 times the initial length. Larger, older plants had wider and thicker blades, and the biomassincrease was roughly proportional to the square of the lengthincrease. Growth was most rapid in January to April, slow in July to October. As a conservative estimate, the summer biomass of the various species of seaweeds had a turnover of 4 to 10 times in the course of 1 year. Applying these figures to an earlier survey of biomass, it is estimated that annual production of seaweeds in St. Margaret's Bay, Nova Scotia, Canada, amounts to 603 gC/m2 averaged over the whole bay, 1750 gC/m2 averaged over the sea-weed zone, or 648.000 gC/m of shore line. Approximate calorific equivalents are 6030 kcal/m2 over the whole bay, or 6480×103 kcal/m of shore line.Contribution to the International Biological Program CCIBP No. 130, and Bedford Institute Contribution.  相似文献   

8.
The Delaware Bay ecosystem has been the focus of extensive habitat restoration efforts to offset finfish losses due to mortality associated with power plant water intake. As a result, a 45 km2 or a 3% increase in total marsh area was achieved by 1996-1997 through the restoration efforts of the Public Service Enterprise Group (PSEG). To quantify the impact of restoration efforts on system productivity, an Ecopath with Ecosim model was constructed that represented all major components of the ecosystem. The model consisted of 47 functional groups including: 27 fish species, 5 invertebrate groups, 4 multi-species benthic groups, 6 multi-species fish groups, 3 plankton groups, 1 shorebird group and 1 marine mammal group. Biomass, abundance, catch, and demographic data were obtained from the literature or from individual stock assessments conducted for principal ecosystem components. A base Ecosim model was fitted to time series of key species in the Bay representing the period 1966-2003. To access the gains from marsh restoration, model simulations reflecting no restoration were conducted to estimate the productivity that would have been lost if restoration efforts had not occurred. The results indicated that restoration increased total ecosystem biomass by 47.7 t km−2 year−1. Simulations indicated increased biomasses across a wide range of species including important forage and commercially important species. The marsh restoration also significantly impacted ecosystem structure increasing the ratio of production-to-respiration, increasing system path length and decreasing the ratio of production-to-biomass.  相似文献   

9.
A decreasing gradation in the plankton standing stock of the Bristol Channel was observed from the seaward section to the inner, less saline, reaches. Two sub-regions of our survey, the North Outer Channel (NOC) and the Inner Channel (IC), represented the extremes of this gradient and were selected for detailed comparison. The integrated zooplankton biomass, over the 307 d sampling period (4 November 1973 to 6 September 1974), was 2 475 mg C m-3 (266 mg C m-2 d-1) in the NOC and 335 mg C m-3 (20 mg C m-2 d-1) in the IC. The omnivorous plankton accounted for 76% of the standing stock in the NOC and 89% in the IC, of which 58 and 23% were meroplankton and 39 and 71% were holoplankton, respectively; the remainder was unassigned. The majority of the meroplankton in both subregions was decapod larvae and adults, whereas the holoplankton biomass was dominated in the NOC by copepods (89%) and in the IC by mysids (57%), mainly Schistomyzis spiritus. Centropages hamatus was the most abundant copepod species in the NOC and accounted for 32% of the total holoplankton omnivore standing stock. In the NOC and IC, the carnivorous plankton accounted for 24 and 11% of the total plankton biomass, respectively. In the two sub-regions, 20 and 21% of the carnivores were meroplanktonic (primarily larvae of sprats and pilchards), while the holoplankton carnivores contributed 75 and 74% to the NOC and IC, respectively (Sagitta elegans, Pleurobrachia pileus). S. elegans dominated the holoplankton carnivore biomass for the majority of the year and accounted for 96% in the NOC and 60% in the IC. The integrated total particulate carbon over the 307 d period was 200 g C m-3 (6 600 g C m-2) in the NOC and 838 g C m-3 (15 084 g C m-2) in the IC. The annual primary production ranged from 164.9 g C m-2 yr-1 in the Outer Channel (North and South) to 6.8 g C m-2 yr-1 in the IC. The zooplankton biomass reached a maximum in July. The total particulate carbon (TPC) in July was 400 mg C m-3 in the NOC of which ca. 78 mg C m-3 were phytoplankton and ca. 21 mg C m-3 were zooplankton; these values compare favourably with those found in the adjoining Celtic Sea. In the IC, the TPC was 2 800 mg C m-3, of which ca. 107 mg C m-3 were phytoplankton and 2.8 mg C m-3 were zooplankton. From the low primary production estimates for the IC it can be concluded that the majority of the chlorophyll, like the TPC, was allochthonous in origin. Furthermore it is suggested that zooplankton plays a minor role in this estuarine ecosystem and is not the main consumer of the suspended particulate carbon; the benthic filter-feeding communities are presumed to fulfill this role in the Bristol Channel.  相似文献   

10.
The copepod community observed during an 18-month period at the mouth of eutrophic Kingston Harbour, Jamaica, was dominated by small species of Parvocalanus, Temora, Oithona, and Corycaeus. Mean copepod biomass was 22.1 mg AFDW m−3 (331 mg m−2). Annual production was 1679 kJ m−2, partitioned as 174 kJ m−2 naupliar, 936 kJ m−2 copepodite, 475 kJ m−2 egg and 93 kJ m−2 exuvial production. All nauplii, most copepodites and many adults, equivalent to half of the biomass and production, were missed by a standard 200-μm plankton net, emphasizing the importance of nauplii and small species in secondary production estimates. The evidence suggests that growth rates and production are generally not food limited, and we speculate that size-selective predation shapes the structure of the harbour community. Biomass and production are higher than previous estimates for tropical coastal waters, but comparable to other eutrophic tropical embayments and many productive temperate ecosystems. Far from being regions of low productivity, tropical zooplankton communities may have significant production and deserve greater research attention than they currently receive. Received: 19 September 1997 / Accepted: 21 October 1997  相似文献   

11.
Benthic suspension feeders in shallow waters develop in relation to the food availability and the variation of physical parameters giving rise to complex communities that act as a control factor on the plankton biomass. The aim of the work is to establish the role of the hydrozoan Eudendrium racemosum in the energy transfer from the plankton to the benthos in marine food chains of the North Adriatic Sea. This study highlighted that the hydroid biomass changed over time in relation to temperature and irradiance, and the highest abundance was observed during summer with about 400,000 polyps m−2 (about 19 g C m−2). The population suffered an evident summer decrease in relation to a peak of abundance of its predator, the nudibranch Cratena peregrina, whose adult specimens were able to eat up to 500 polyps day−1 and reached an abundance of 10 individuals m−2. The gut content analysis revealed that the hydroid diet was based on larvae of other benthic animals, especially bivalves and that the amount of ingested preys changed during the year with a peak in summer when it was estimated an average predation rate of 13.7 mg C m−2 day−1. In July, bivalves represented over 60 % of the captured items and about 18 mg C m−2 day−1. Values of biomass of E. racemosum are the highest ever recorded in the Mediterranean Sea, probably supported by the eutrophic conditions of the North Adriatic Sea. Moreover, our data suggest that settling bivalves provide the greater part of the energetic demand of E. racemosum.  相似文献   

12.
Pelagic primary production and benthic and pelagic aerobic metabolism were measured monthly at one site in the estuarine plume region of the nearshore continental shelf in the Georgia Bight. Benthic and water-column oxygen uptake were routinely measured and supplemented with seasonal measures of total carbon dioxide flux. Average respiratory quotients were 1.18:1 and 1.02:1 for the benthos and water column, respectively. Benthic oxygen uptake ranged from 1.23 to 3.41 g O2 m-2 d-1 and totalled 756 g O2 m-2 over an annual period. Water column respiration accounted for 60% of total system metabolism. Turnover rates of organic carbon in sediment and the water column were 0.09 to 0.18 yr-1 and 6.2 yr-1, respectively. Resuspension appeared to control the relative amounts of organic carbon, as well as the sites and rates of organic matter degradation in the benthos and water column. Most of the seasonal variation in benthic and pelagic respiration could be explained primarily by temperature and secondarily by primary productivity. On an annual basis, the shelf ecosystem appeared to be heterotrophic; primary production was 73% of community metabolism, which was 749 g C m-2 yr-1. The timing of heterotrophic periods through the year appeared to be closely related to both river discharge and the periodicity of growth and death of marsh macrophytes in the adjacent estuary. The results of this study support the estuarine outwelling hypothesis of Odum (1968).This is Contribution No. 530 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce  相似文献   

13.
Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Δ0?°C and Δ6?°C) and three light scenarios (62, 57 and 49?% of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator–prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day °C?1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Δ6?°C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Δ6?°C (μ?0?°C?=?0.12 day?1 and μ?6?°C?=?0.25 day?1). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q10 values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.  相似文献   

14.
Algal and bacterial biomass and production were measured in the plankton, platelet ice and congelation ice communities at one station in McMurdo Sound, Antarctica during September and October 1986. Bacterial abundances and particulate organic carbon and nitrogen were 10 to 100 times greater in the plankton than in the sea ice, whereas the chlorophyll a concentrations in the plankton and sea ice microbial communities (SIMCO) were similar Rates of both light-limited and light-saturated photosynthesis and daily primary production were 2 to 6 times greater in the plankton than in the SIMCO. Bacterial growth rates ranges from 0.7 to 1.5 d-1 in all three communities; however, because of the greater bacterial biomass in the plankton, bacterial production was 15 to 20 times higher there than in the SIMCO. These results suggest that during the early austral spring, planktonic production contributes significantly to total production in ice-covered environments.  相似文献   

15.
From May 2002 to October 2003, a fortnightly sampling programme was conducted in a restricted macrotidal ecosystem in the English Channel, the Baie des Veys (France). Three sets of data were obtained: (1) physico-chemical parameters, (2) phytoplankton community structure illustrated by species composition, biovolume and diversity, and (3) primary production and photosynthetic parameters via P versus E curves. The aim of this study was to investigate the temporal variations of primary production and photosynthetic parameters in this bay and to highlight the potential links with phytoplankton community structure. The highest level of daily depth-integrated primary production Pz (0.02–1.43 g C m−2 d−1) and the highest maximum photosynthetic rate P B max (0.39–8.48 mg C mg chl a −1 h−1) and maximum light utilization coefficient αB [0.002–0.119 mg C mg chl a −1 h−1 (μmol photons m−2 s−1)] were measured from July to September. Species succession was determined based on biomass data obtained from cell density and biovolume measurements. The bay was dominated by 11 diatoms throughout the year. However, a Phaeocystis globosa bloom (up to 25 mg chl a m−3, 2.5 × 106 cells l−1) was observed each year during the spring diatom bloom, but timing and intensity varied interannually. Annual variation of primary production was due to nutrient limitation, light climate and water temperature. The seasonal pattern of microalgal succession, with regular changes in composition, biovolume and diversity, influenced the physico-chemical and biological characteristics of the environment (especially nutrient stocks in the bay) and thus primary production. Consequently, investigation of phytoplankton community structure is important for developing the understanding of ecosystem functioning, as it plays a major role in the dynamics of primary production.  相似文献   

16.
The annual cycle of protozooplankton in the Kiel Bight   总被引:6,自引:0,他引:6  
Protozooplankton (heterotrophic dinoflagellates and ciliates) composition and biomass was studied in a 20-m water column in the Kiel Bight on 44 occasions between January 1973 and April 1974. Both groups attained comparable biomass maxima during spring and autumn (0.3 to 0.7 g C m-2 in the 20-m water column) and biomass levels were much lower in summer and lowest in winter. The spring protozooplankton maximum coincided with that of phytoplankton and during the rest of the year, protozooplankton stocks did not appear to be food limited as phytoplankton stocks were large throughout; many protozoans with ingested microplankton cells were observed, indicating that their potential food supply is not restricted to nanoplankton. Non-loricate organisms dominated biomass of the ciliates and tintinnids were of little importance. Tintinnids predominated in plankton samples concentrated by 20 m gauze indicating that most non-loricate ciliates, irrespective of size, were not retained. When phytoplankton sotcks were large (>3 g C m-2) but those of metazooplankton small, as in spring and autumn, protozooplankton were the major herbivores with biomass levels comparable to those attained in summer by metazooplankton ( 0.5 g C m-2). A highly significant negative correlation was found between protozooplankton and metazooplankton during the plankton growth season. Predation by the latter is thus an important factor regulating size of the protozooplankton population, although other factors also appear to be in operation. Loss rates of the pelagic system through sedimentation are highest in spring and autumn when protozooplankton dominate the grazing community and loss rates are much lower in summer when metazooplankton are the dominant herbivores. Apparently, the impact of protozooplankton grazing on the pelagic system is quite different to that of the metazooplankton.Publication No. 268 of the Joint Research Programme (SFB 95), Kiel University  相似文献   

17.
D. Binet 《Marine Biology》1984,82(2):143-156
In the southwestern part of the lagoon of New Caledonia (South Pacific Ocean), a plankton sampling programme was conducted from February 1978 to April 1979. During 11 cruises, 5 stations in the open sea and various bays were sampled at approximately monthly intervals. A transect of 3 stations (mid lagoon, near-reef and barrier-reef channel) visited each fortnight, completed the sampling programme. The copepods collected were identified to the specific level, counted and the 52 most abundant species analysed for seasonal and regional variations. Cruise and transect data, dealt with separately, were analysed as follows: (a) Correspondence analyses (reciprocal averaging) of qualitative and quantitative copepod counts were made; these revealed the relationships between species and between samples by means of factorial design. After computation of factorial axes, the barycentres of different sets of samples were projected as reference points (zero weight) in the factorial space; these reference points, characterizing different stations and sampling times, facilitate ecological interpretation. (b) Species partition was achieved by two successive methods: non-hierarchical, followed by hierarchical classification. Between-species distance was computed from their co-ordinates on the factorial axis. (c) The clusters of species obtained were plotted in the factorial planes to assess ecological preference. Then, clusters from cruise and transect data sets were compared to improve the copepod classification. The main ecological factors appear to be (i) spatial patterns, (ii) seasonal temperature cycle, (iii) changes in wind force and direction. Different populations inhabit the open sea, near-reef, mid-lagoon, shallow and deep-bay waters. Acartia australis outnumbers all other species in the reef vicinity. A. amboinensis is the most abundant in the deep, fjord-like bay. Canthocalanus pauper, Paracalanus parvus, Bestiola sp., Centropages orsinii, A. bispinosa are characteristic of shallow bays. In the factorial structure produced by correspondence analysis, certain seasonal barycentres appear close to some station barycentres: summer close to mid-lagoon, winter close to open sea, and spring close to near-reef barycentres, respectively. This may be explained by the seasonal dynamics of the lagoon water. After the heavy summer rainfalls, freshwater runoff carries midlagoon plankton towards the open sea; conversely, during the winter westerly gales, oceanic species enter the lagoon through the barrier-reef channel or above the reef with the swell breakers. In October, the surface-layer current induced by the strong trade wind carries large swarms of A. australis out to the open sea. Finally, the variations of plankton populations and biomass in the lagoon seem to be governed by the direction of water flow across the reef channels. Enrichment factors are terrestrial sediment wash-out after rainfall and, probably, trade wind-induced upwelling. Therefore, the more or less steady state of the lagoon's plankton biomass may result from the fact that enrichment factors are also exportation factors. Reciprocally, the entry of plankton-poor oceanic water cannot increase the plankton biomass in the lagoon.  相似文献   

18.
The study was carried out in the neritic and estuarine waters of Porto Novo, Coromandel Coast, Bay of Bengal, India during the period January, 1960 to December, 1967. The average displacement volume of plankton usually varied between 2 and 4 c2/m2. During summer, with a season of high plankton productivity, the average plankton displacement volume rose to 8 c2/m3. Generally speaking, the average zooplankton density (standing crop) was usually between 80,000 and 100,000 organisms/m3, of which copepods alone comprised usually between 70,000 and 90,000 organisms/m3. The average copepod density per sample varied from 30,000 to 50,000 organisms/m3. However, in the summer months, the copepod density was usually not less than 100,000 organisms/m3; in some years this was even higher (from 125,000 to 170,000 organisms/m3). Copepods comprised between 80 and 95% of the zooplankton population. The maximum non-copepod population in the zooplankton seldom reached 30%, was ofter below 25%, and usually less than 20%. During the period March to October (in some years as early as February, and in some years up to November), either an increasing or a steady trend of plankton production was evident. It would appear that salinity and rainfall determine the occurrence and distribution of plankton in Porto Novo.Contribution No. 189 from the Centre of Advanced Study in Marine Biology, Marine Biological Station of Annamalai University, Porto Novo, Tamilnadu, India.  相似文献   

19.
Beaver–willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m−2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.  相似文献   

20.
The structure and some functional characteristics of the plankton community at the time of aExuviaella cordata red tide were investigated in Burgas Bay, Bulgaria, in May and June 1986. Characteristics of main plankton components (phyto-, bacterio-, nanoheterotrophic plankton, ciliates and mesoplankton) in the bloom area are presented. Development of theE. cordata bloom was determined by abiotic conditions among which eutrophication and salinity decrease caused the patchy character of its rapid development. Attainment of maximum red tide (ca. 1x109 cells l-1; 1x103 g m-3) from background (500 to 800x103 cells l-1; 600 mg m-3) took 3 to 7d. Growth rate () during that period was 1.2 to 2.2 doublings per day. A sharp bloom decline (3 to 4d) was caused by parasitic flagellates destroying the alga's chloroplast. Diel biomass losses due to grazing remained below 5%. Metabolites and degradation products ofE. cordata revealed no pronounced toxic effects on the other components of the planktonic community. The rapid bloom degradation due to the effects of parasitic flagellates indicates the high potential of ecosystem self-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号