首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Residues of organochlorine pesticides in Hong Kong soils   总被引:22,自引:0,他引:22  
Zhang HB  Luo YM  Zhao QG  Wong MH  Zhang GL 《Chemosphere》2006,63(4):633-641
It was short of research on the organochlorine pesticides (OCPs) residues in the soils of Hong Kong. Sixty-six representative soil samples were collected from the 46 sites covering five types of land uses in Hong Kong. Hexachlorohexanes (HCH) and 7 Stockholm Convention OCPs were analyzed by gas chromatograph (GC) equipped with a Nickel 63 electronic capture detector (muECD). The results presented that HCH and 5 Stockholm Convention pesticides were detected in Hong Kong soils although the detectable ratio varies to a great extent. The concentration sequence of the five detectable OCPs was HCH > dichlorodiphenyltrichloroethane (DDT) > hexachlorobenzene (HCB) approximately = Endrin > alpha-endosulfan. Among the OCPs and their homologues or isomers, beta-HCH and p,p'-DDE were the two predominant substances according to the concentrations and detectable ratios, concentrations of which in soils were averagely 6.12 microg kg(-1) and 0.41 microg kg(-1) respectively. Soil horizon samples of 0-10 cm, 10-30 cm and >30 cm depth were selected from nine soil profiles to demonstrate the depth distributions of DDT and HCH in soil profiles. Concentrations of HCH tended to increase gradually from the topsoil to bottom layer while the lowest concentration of DDT is usually found in the subsoil (10-30 cm) in most sampling sites. In addition, close correlations of pH(KCl) and total organic carbon (TOC) with HCH indicated an effect on the residues of HCH caused by these two soils properties, but such relationships were not found with DDT or other OCPs.  相似文献   

2.
The influence of temperature and solar radiations on the rapid dissipation of DDT from tropical soils was studied by quantifying volatilisation, mineralisation, binding and degradation of ((14)C)-p,p'-DDT in a sandy loam soil. The bulk of the DDT loss occurred by volatilisation, which increased fivefold when the temperature changed from 15 to 45 degrees C. Degradation of DDT to DDE was also faster at higher temperatures. Mineralisation of DDT, though minimal, increased with temperature and time. Higher temperatures also enhanced binding of DDT to soil. Flooding the treated soil further increased volatilisation and degradation, although mineralisation was greatly reduced. Exposure of flooded and unflooded soils treated with DDT to sunlight in quartz, glass and dark tubes for 42 days during summer resulted in significant volatile losses. Volatilisation in the quartz tubes was nearly twice as great as that in the dark tubes The volatilised organics from the quartz tubes contained larger amounts of p,p'-DDE than the glass and dark tubes. Higher rates of volatilisation and degradation were found in flooded soils. Also significant quantities of p,p'-DDD were detected in addition to DDE. The data clearly show that volatilisation is the major mechanism for the rapid dissipation of DDT from Indian soils.  相似文献   

3.
The effects of three soil pH's, three soil temperatures, and three soil moistures on [14C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 degrees C compared with 25 degrees C and 15 degrees C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 degrees C greater than 25 degrees C greater than 15 degrees C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils.  相似文献   

4.
Chlorinated compounds have preferential attraction for organic phases found in sediments. Usage of chlorinated pesticides in agriculture and vector control is more in developing countries. The residue levels of HCH isomers, and DDT, and its metabolites were quantified in surface sediments from the River kaveri and Coleroon in Tamil Nadu state, South India. The concentration of HCH ranged from 4.35 to 158.4 ng g-1 (dry wt.). Among the isomers of HCH, alpha-HCH is predominant followed by beta and gamma-HCH. The levels of DDT varied from 0.69 to 4.85 ng g-1 (dry wt.). Among the DDT compounds, p,p'-DDE quantified more (> 40%) in all the sites. This suggests that p,p'-DDE is a major breakdown (dehydrochlorination) product of DDT in the sediment compartment. Higher concentration of HCH residues reveals its large usage in agriculture. The flux of pesticide residues from land to river including downward flux to sediment is less.  相似文献   

5.
Feng K  Yu BY  Ge DM  Wong MH  Wang XC  Cao ZH 《Chemosphere》2003,50(6):683-687
The use of organo-chlorine (DDT and HCH) has been banned in China for 20 years. A field survey was carried out during 1999-2000 in the Taihu Lake Region. Organo-chlorine pesticide (OCP) residues in soil, water, fish and sediment samples were investigated. DDT was detected in 5 out of 10 samples with concentration ranging from 0.3 to 5.3 microg/kg in the surface (0-15 cm) layer, 6 out of 10 with 0.5 to 4.0 microg/kg in the subsoil layer (16-30 cm), and 4 of 10 with 0 to 2.7 microg/ kg in the deep soil layer (31-50 cm). Results for HCH residues in soil samples were similar to those of DDT. These results indicate that OCP residues in 0-50 cm profile had been leached out or degraded to safe level. In river water DDT was detected in 10 out of 13 samples ranging from 0.2 to 9.3 microg/l, with an average of 1.0 microg/l. While HCH was detected in 12 out of 13 samples ranging from 0.02 to 36.1 microg/l, with an average 5.6 microg/l. DDT residues in sediment ranged from 0.1 to 8.8 microg/kg, while HCH ranged from 0.3 to 66.5 microg/kg. DDT residues in fish body ranged from 3.7 to 23.5 microg/kg and HCH ranged from 3.7 to 132 microg/kg. These results demonstrate an accumulation through food chain (from soil-water-sediment-microbes-crop-fish-... etc.), also that HCH residues are generally more persistent than DDT residues. However, all these data are well below than the state warning standard limit.  相似文献   

6.
Abstract

14C‐p,p'‐DDT‐bound residues in soil can be released by treatment with concentrated sulphuric acid at ambient temperatures. Within 6 days, about 70% of the bound residues was released. Bound residues released after 9 months incubation with 14C‐DDT showed the presence of DDT and DDE only while bound residues released after 18 months, contained in addition 13% DDD.

Release of bound 14C‐residues also occurs readily following inoculation of the soil‐bound residues with fresh soil or with individual microorganisms. Almost complete release of bound residues was observed after incubation for 45 days. The rate of release was rapid during the first two weeks and decreased thereafter. TLC and HPLC analysis showed that the released residues contained DDE (about 80%) and a smaller amount of DDD. The disappearance of DDT from the released residues may be attributed to its microbiological degradation to DDE and DDD, shortly after its release.  相似文献   

7.
Zhu Y  Liu H  Xi Z  Cheng H  Xu X 《Chemosphere》2005,60(6):770-778
Concentrations of HCH (hexachlorocyclohexane) and DDT (Dichlorodiphenyltrichloroethane) were determined in shallow subsurface (5-30 cm depth) and deep soil layers (150-180 cm depth) from the outskirts of Beijing, China. Concentrations of total HCHs (including alpha, beta, gamma, delta-isomers) and total DDTs (including p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT) in shallow subsurface soils ranged from 1.36 to 56.61 ng/g dw (median 5.25 ng/g), and from 0.77 to 2178 ng/g (median 38.66 ng/g), respectively, and those in the deeper layers were approximately an order of magnitude less. The spatial distribution of HCHs and DDTs reflected the known historical usage of these pesticides. No correlation between the concentrations of pesticides and soil organic matter content or clay content can be found. The factors affecting residue levels and compositions of DDT and HCH were discussed. The contour maps of beta/gamma ratios and DDT/DDE ratios for both the shallow subsurface and deep layer soils were drawn.  相似文献   

8.
Mishra K  Sharma RC  Kumar S 《Chemosphere》2011,85(3):454-464
Organochlorine pesticides (OCPs) have been beneficial to man and environment but their inadvertent use has caused considerable harm to human health. Despite the proliferation of different types of pesticides, organochlorines such as HCH and DDT still account for two third of the total consumption in India because of their low cost and versatility in action again various pests. Since, Assam, a state in North-eastern part of India is an endemic area with perennial transmission where mosquito borne diseases are serious health problems; these pesticides are still being used in huge quantities in vector control as well as in agriculture. A total of 331 human blood samples were collected from district Nagaon and Dibrugarh of Assam to determine the residue levels of DDT and HCH in human blood. The concentrations of selected persistent organochlorine pollutants were measured with gas chromatography-electron capture detector. The results demonstrated that the mean levels of total DDT and HCH were 743 μg L(-1) and 627 μg L(-1) for district Nagaon while 417 μg L(-1) and 348 μg L(-1) for district Dibrugarh. The difference of total HCH and total DDT between these two districts was found to be highly significant (P<0.0001). Among DDT metabolites, the same trend was observed for both the districts as p,p-DDT was the principal component contributed 41% for Nagaon and 58% for Dibrugarh. In case of HCH residues, for Nagaon, β-HCH was the predominant contaminant comprised more than 34% while for Dibrugarh, it was α-HCH that was contributing 43% of total HCH concentration.  相似文献   

9.
Abstract

In support of field data, laboratory studies were conducted on volatilization, mineralization and binding of 14C‐p,p'‐DDT in soils at Sao Paulo. Incubation of soil for 6 weeks did not result in volatilized organics or mineralization; with >95% extractable radiocarbon in the form of p,p'‐DDT. Small amounts of bound residues (1.8%) were detected in soil. These data confirm the very slow dissipation of DDT in the field which presumably relates to the acidic pH of soil (4.5–4.8).

Bound 14C‐residues in soils treated with 14C‐p,p'‐DDT at Praia Grande and Sao Paulo could be released (5–21%) by sulphuric acid treatment. The released residue had the composition: 69–90% DDT, 7–32% DDD and 0–3% DDE. Incubation of soil bound 14C‐residues with fresh inoculum for 3 months did not result in release of 14C.

Dissipation from wooden surfaces was fairly slow. After 20 weeks, 74% of the applied radioactivity could be recovered; 44% hexane‐non‐extractable.  相似文献   

10.
Chlorpyrifos degradation in Turkish soil   总被引:12,自引:0,他引:12  
Degradation of chlorpyrifos was evaluated in laboratory studies. Surface (0-15 cm) and subsurface (40-60 cm) clay loam soils from a pesticide-untreated field were incubated in biometer flasks for 97 days at 25 degrees C. The treatment was 2 micrograms g-1 [2,6-pyridinyl-14C] chlorpyrifos, with 74 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil subsamples were also methanol-extracted [ambient shaking, then supercritical fluid extraction (SFE)], then analyzed by thin-layer chromatography. Total 14C and unextractable soil-bound 14C residues were determined by combustion. From the surface and subsurface soils, 41 and 43% of the applied radiocarbon was evolved as 14CO2 during 3 months incubation. The time required for 50% loss of the parent insecticide in surface and subsurface soils was about 10 days. By 97 days, chlorpyrifos residues and their relative concentration (in surface/subsurface) as % of applied 14C were: 14CO2 (40.6/42.6), chlorpyrifos (13.1/12.4), soil-bound residues (11.7/11.4), and 3,5,6-trichloropyridinol (TCP) (3.8/4.8). Chlorpyrifos was largely extracted by simple shaking with methanol, whereas TCP was mainly removed only by SFE. The short persistence of chlorpyrifos probably relates to the high soil pH (7.9-8.1).  相似文献   

11.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

12.
The present study was conducted to determine the residue levels of persistent organochlorines such as PCB homologues, DDT and its metabolites, and HCH isomers in the ventral blubber of female northern fur seal (Callorhinus ursinus) collected off Sanriku, the Pacific coast of northern Japan, since 1971. Among the organochlorines examined, the concentrations of PCBs and DDTs were found to be high in all samples. The residue levels of these two contaminants showed a drastic reduction following maturity and then a slight increase after the retirement from pregnancy/menopause. Temporal variation of PCB and DDT residues showed maximum levels around 1976 and then decreased, whereas HCH residue levels revealed a very slow declining pattern. Considering the concentrations and compositions of the residues, the northern fur seal is likely to be exposed to organochlorine contamination deriving from global terms. In this context, continuous contamination has been foreseen with regard to PCB and HCH residues. The pattern of organochlorine residues indicated that the northern fur seal has higher metabolic capacity than Dall's porpoise, while it is comparable to those of larga seal and Steller sea lion.  相似文献   

13.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

14.
Paddy soil and sediment samples collected from the Vellar River watershed, Tamil Nadu state, South India from December, 1987 to January, 1989 were analysed to understand the comprehensive behaviour of organochlorine insecticides (HCH and DDT) in the tropical environment. HCH (BHC) showed higher levels in soil during wet season, reflecting the application of technical HCH largely during the flowering season of rice. On the other hand, DDT residues were low and did not show a significant seasonal trend in soil or sediment, indicating small quantities of DDT utilized at present for agricultural purposes in India. When compared to soil, the residue levels in sediments are low and the seasonal variation is less pronounced. This indicates that in tropical watersheds, the relative flux of residues into the aquatic environment is smaller than the amount volatilized to the atmosphere.  相似文献   

15.
Fate of 14C-bisphenol A in soils   总被引:8,自引:0,他引:8  
Fent G  Hein WJ  Moendel MJ  Kubiak R 《Chemosphere》2003,51(8):735-746
Bisphenol A (BPA; 2,2-(4,4(')-dihydroxydiphenyl)propane) is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of BPA released into the environment can reach the soil via application of sewage sludge from wastewater treatment systems that receive wastewaters containing BPA, or from leachate from uncontrolled landfills. The biodegradability of BPA has been previously investigated in several studies designed to simulate surface waters and biological wastewater treatment systems. However, there is little information available about the fate of BPA in soil. Therefore, laboratory soil degradation and batch adsorption studies were conducted with 14C-BPA and four soils according to international guidelines. The soils represented a broad range of physico-chemical properties. An important result of the degradation study was that, independent of the soil type, 14C-BPA was rapidly dissipated and not detectable in soil extracts following 3 days of incubation. Based on this result, a dissipation half-life of less than 3 days was estimated. The major route of dissipation of 14C-BPA in soil was the formation of bound residues that could not be recovered by exhaustive Soxhlet extraction. 14C-BPA was also shown to be transiently converted to up to five metabolites, but within 3 days, neither 14C-BPA nor 14C-metabolites were detectable in the soils. After 120 days incubation, significant amounts (up to 20% of the radioactivity applied) of the parent compound were recovered as 14CO(2). Soil adsorption experiments indicated that the distribution coefficients (K(oc)) were between 636 and 931, classifying BPA as having low mobility for all tested soils. From the results of this study, it was concluded that if BPA reaches the soil compartment, it is not expected to be stable, mobile, or bioavailable.  相似文献   

16.
Abstract

Potato tubers were applied with radiolabelled lindane (U‐14C γ‐ 1,2,3,4,5,6 hexachlorocyclohexane) at three dose levels 30, 150, and 300 ppm and stored for 30, 60 and 90 days at room temperature. The data revealed that lindane penetrated into the pulp tissues through the epidermal layer. The amounts recovered in the peel were found to increase with a greater storage period up to 60 days followed by a drop at 90 days. On the other hand, there was a slight increase in radioactivity in the pulp tissue from 30 to 60 days followed by significant increase after 90 days. The incorporation of the compound in the tubers was dose independent. Methanol extraction showed binding of about 8.1% and 5.8% ofthe applied dose in peel and pulp tissues, respectively. The insecticide was found to be bioavailable when rats health hazard. It is therefore, desirable to demonstrate that the quantity of the terminal residues may be safe for the consumer. In the present investigation an attempt was made to determine the fate and bioavailability of lindane when applied to stored potato tubers.  相似文献   

17.
The contribution of spraying DDT and HCH for malaria control towards the contamination of bovine milk was investigated by analysing milk samples collected from preselected localities sprayed with either DDT or HCH in the Punjab. A direct correlation was found between the amounts of residues of these insecticides in milk and their typical usage pattern for the mosquito control programme. It is considered that these results may have significant bearing on the regulatory control of DDT and HCH residues in milk.  相似文献   

18.
Elfvendahl S  Mihale M  Kishimba MA  Kylin H 《Ambio》2004,33(8):503-508
High levels of DDT residues and hexachlorocyclohexanes (HCHs) were found in soil, well water, and surface water around a collapsed pesticide storage shed at Vikuge Farm, Tanzania. Residues of DDT and HCHs were found at three soil depths down to 50 cm. Surface soil samples contained up to 28% total DDT and 6% total HCH residues. Water samples had concentrations of up to 30 microg L(-1) of organochlorine pesticides. Other compounds detected were aldrin, azinphos-methyl, carbosulfan, gamma-chlordane, chlorprofam, heptachlor, hexazinone, metamitron, metazachlor, pendimethalin, and thiabendazole. Although the visible remains of pesticides have been removed, the remaining soil is itself hazardous waste and poses a risk to the environment and the inhabitants of the surrounding villages. These findings show the necessity to follow up the environmental situation at former storage sites of obsolete stocks of pesticides, and that the environmental problems are not necessarily solved by removing the visible remains.  相似文献   

19.
Constructed wetlands offer promise for removal of nonpoint source contaminants such as herbicides from agricultural runoff. Laboratory studies assessed the potential of soils to degrade and sorb atrazine and fluometuron within a recently constructed wetland. The surface 3 cm of soil was sampled from two cells of a Mississippi Delta constructed wetland; one shallow area disturbed only hydrologically, and the second excavated to provide greater water-holding capacity. The excavated area was more acidic on average (pH 4.85 versus 5.21), but otherwise the physical properties and general microbial enzyme activities in the two areas were similar. Soils were treated with 84 and 68 microg kg(-1) soil (14)C-ring labeled atrazine and fluometuron, respectively, and incubated under either saturated (88% moisture, w:w) or flooded (1cm standing water) conditions. Soils were sampled over 32 days and extracted for herbicide and metabolite analysis. Under saturated conditions, fluometuron metabolized to desmethylfluometuron (DMF) with a half-life equal 25-27 days. However, under flooded conditions, the half-life of fluometuron was more than 175 days. Atrazine dissipated rapidly in saturated and flooded soil with a half-life of approximately 23 days, but only 10% of atrazine was mineralized to CO(2). The overall atrazine and fluometuron dissipation rates were similar between the two cells, but each area had a different pattern of metabolite accumulation. The major route of atrazine dissipation was incorporation of atrazine residues into methanol-nonextractable (soil-bound) components, with minimal extractable metabolite accumulation. A mixed-mode extractant (potassium phosphate:acetonitrile) recovered greater amounts of (14)C-residues from atrazine-treated soils, suggesting that hydrolysis of atrazine to hydroxylated metabolites was a major component of the bound residues. These studies indicate the potential for herbicide dissipation in wetland soils and a differential effect of flooding on the fate of these herbicides.  相似文献   

20.
Studies on degradation of 14C-DDT in the marine environment.   总被引:4,自引:0,他引:4  
Degradation of 14C-DDT was studied in a marine ecosystem for 60 days and in marine sediments under moist and flooded conditions using a continuous flow system for a period of 130 days. 14C-DDT residues were recovered in sediments of the marine ecosystem at uniform level of 60-65% of the applied 14C-activity throughout the incubation period. DDD was a major metabolite in sediments while DDMU was a major metabolite in clams. Clams brought about substantial degradation of DDT. However, 14C-residues recovered form clams are not suggestive of significant bioaccumulation. In the continuous flow experiment, under both moist and flooded conditions, DDT underwent degradation and about 22% of the applied 14C-activity was recovered as volatiles under both conditions. In sediments, extractable 14C-residues accounted for about 30 and 19% under moist and flooded conditions, respectively. DDT was the major compound in extractable residues as identified by TLC-autoradiographic procedures. More bound residues were formed under flooded than under moist conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号