首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixation on a coral reef   总被引:9,自引:0,他引:9  
Acetylene reduction was used to assess nitrogen fixation on all major substrates at all major areas over a period of 1 to 6 yr (1980–1986) at One Tree Reef (southern Great Barrier Reef). Experiments using 15N2 gave a ratio of 3.45:1.0 for C2H2 reduced:N2 fixed. Acetylene reduction was largely light-dependent, saturated at 0.15 ml C2H2 per ml seawater, and linear over 6 h. High fixation was associated with two emergent cyanophyte associations, Calothrix crustacea and Scytonema hofmannii, of limited distribution. Subtidally, the major contribution to nitrogen fixation came from well-grazed limestone substrates with an epilithic algal community in the reef flat and patch reefs (3 to 15 nmol C2H4 cm-2 h-1). Similar substrates from the outer reef slope showed lower rates. Nitrogen fixation on beach rock, intertidal coral rubble, reef crest and lagoon sand was relatively small (0.3 to 1.0 nmol C2H4 cm-2 h-1). Seasonal changes in light-saturated rates were small, with slight reduction only in winter. Rates are also reported for experimental coral blocks (13 to 39 nmol cm-2 h-1) and for branching coral inside and outside territories of gardening damselfish (3 to 28 nmol cm-2 h-1). This work supports the hypothesis that the high nitrogen fixation on the reef flat and patch reefs of the lagoon (34 to 68 kg N ha-1 yr-1) is because these subtidal areas support highly disturbed communities with the greatest abundance of nitrogen-fixing cyanophyte algae. It is calculated from a budget of all areas that One Tree Reef has an annual nitrogen fixation rate of 8 to 16 kg N ha-1 yr-1.  相似文献   

2.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

3.
N2 fixation (C2H2 reduction) associated with the leaves of the sea grass Thalassia testudinum was investigated at 5 sites in South Florida (Biscayne Bay) and one site in the Bahamas (Bimini Harbor). Significant activities were correlated with the occurrence of a heterocystous blue-green alga (Calothrix sp.) on the leaves. C2H2 reduction was not stimulated by organic compounds, either aerobically or anaerobically in the light or dark. Therefore, other physiological types of microbes were not important in N2 fixation. Diurnal and seasonal variations in N2 fixation occurred, with maximal rates during the daytime and in the late spring and early summer. N2 fixation was negligible at four stations in Biscayne Bay. At the fifth station, near Fowey Rock, about 5 kg N ha-1 year-1 was fixed. In the summer, the N2 fixed per day (4–5 mg N m-2) could provide 4 to 23% of the foliar productivity demands of T. testudinum at this site and the station in Bimini Harbor. N2 fixation at the periphery of a sea-grass patch, near Fowey Rock, could provide 8 to 38% of the daily nitrogen requirement for leaf production, and thereby might compensate for a less effective trapping and recycling of nitrogen from dead leaves in such regions.  相似文献   

4.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

5.
This study was undertaken in 1981 to determine whether there were major variations in potential rates of nitrogen fixation on apparently bare coralline substrate from reefs across the continental shelf of the central Great Barrier Reef. Nitrogen fixation, measured as rates of ethylene production (nmol cm-2h-1), was significantly lower on substrata from two inner-shelf reefs, (0.46 and 1.07) than on two middle-shelf reefs (2.10 and 2.97) and on two outer-shelf reefs (3.20 and 3.81). By contrast, algal biomass (mg cm-2) on experimental substrate was significantly higher on inner-shelf reefs (80.8 and 59.4) than on middleshelf (27.1 and 23.8) and outer-shelf reefs (26.4 and 22.4). The rate of nitrogen fixation was positively correlated with the proportion of bare substratum and significantly higher concentrations of dissolved inorganic nitrogen were found in waters over the reefs than in water flowing onto those reefs. The abundance of algal-grazing fishes was reported previously to be significantly lower on inner-shelf reefs. It is suggested that this cross-shelf variation in the activity of algal-grazing fishes may be a determinant of the observed cross-shelf variations in potential nitrogen fixation.Contribution No. 233 from the Australian Institute of Marine Science  相似文献   

6.
Grazing effects on nitrogen fixation in coral reef algal turfs   总被引:2,自引:0,他引:2  
This study addressed whether grazing by the sea urchin Diadema antillarum influenced rates of nitrogen fixation by algal turf communities on Caribbean coral reefs. Because the turfs were nitrogen-limited, we also assessed whether newly-fixed nitrogen was important for supporting net primary productivity by the turfs. We measured acetylene reduction in turfs grown in treatments excluding or including D. antillarum in the presence of other herbivores at 3 m water depth on Tague Bay forereef, St. Croix, U.S. Virgin Islands. These were the first measurements of acetylene reduction on coral reefs under quasi-natural conditions of high water-flow and photosynthetic oxygen generation. Rates of acetylene reduction under these conditions were as high as any measured previously in coral reef communities (mean 7.6 nmol C2H4 cm−2 h−1). Algal turfs grazed by D. antillarum and other herbivores had chlorophyll-specific acetylene reduction rates up to three times higher than when D. antillarum was excluded. High rates of nitrogen fixation by the turfs were sufficient to meet <2% of the nitrogen required to support net chlorophyll-specific primary productivity over 24 h. Grazer-mediated increases in nitrogen fixation do not appear responsible for a parallel enhancement of net primary productivity. Algal turfs at this site must be dependent primarily on external sources of nitrogen. Received: 1 July 1997 / Accepted: 5 September 1997  相似文献   

7.
Nitrogen-fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Zostera noltii Hornem in the Bassin d'Arcachon, south-west France, between March 1994 and February 1995, using both slurry and whole-core techniques. Measured rates using the slurry technique consistently overestimated those determined on whole cores, probably due to the release of labile organic carbon sources as a result of root damage during preparation of the slurries. Thus, the whole-core technique may provide a more accurate estimate of in situ activity, since disturbance of physicochemical gradients of oxygen, sulphide, nutrients and the relationship between the plant roots and the rhizosphere microflora is minimised. Rates measured by the whole-core method were 1.8- to 4-fold greater (dependent upon season) in the light than those measured during dark incubations, indicating that organic carbon diffusing from the plant roots during photosynthesis was an important factor in regulating nitrogen fixation in the rhizosphere. Additions of sodium molybdate, a specific inhibitor of sulphate-reducing bacteria (SRB) inhibited acetylene-reduction activity by >80% as measured by both the slurry and whole-core techniques throughout the year, inferring that SRB were the dominant component of the nitrogen-fixing microflora. A mutualistic relationship between Z. noltii and nitrogen-fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. Acetylene- and sulphate-reduction rates showed distinct summer peaks which correlated with a reduced availability of ammonium in the sediment and the annual growth cycle of Z. noltii in the basin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by the availability of organic carbon from the plant roots and maintenance of a low NH 4 + concentration in the vicinity of the plant roots due to efficient assimilation of NH 4 + by Z. noltii during the growth season. Nitrogenfixation rates determined from acetylene-reduction rates measured using the whole-core technique ranged from 0.1 to 7.3 mg N m-2d-1, depending on season, and were calculated to contribute between 0.4 and 1.1 g N m-2yr-1, or 6.3 to 12% of the annual fixed nitrogen requirement of Z. noltii.  相似文献   

8.
N2 fixation (C2H2 reduction) was associated with several species of macroalgae on a coral reef near Grand Bahama Island. The highest rates were associated with Microdictyon sp. (Chlorophyceae) and Dictyota sp. (Phaeophyceae). Extensive mats of filamentous blue-green algae, not heterotrophic bacteria, were the N2 fixing agents: in experiments with samples of Microdictyon sp., the activity was lightdependent and not stimulated by organic compounds under either aerobic or anaerobic conditions. Assays in situ, at 20 m depth, and on shipboard, gave similar rates of N2 fixation; the cyanophytes presumably have pigment adaptations to function in blue light. The maximum rate of N2 fixation, associated with Microdictyon sp., was 3.8 g N fixed g dry weight-1 h-1. Coral-reef communities flourish in nutrientimpoverished waters, and therefore any input of nitrogen is probably important in stabilizing such ecosystems.  相似文献   

9.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

10.
Total aboveground nitrogen accretion through the 1975 growing season at a short Spartina alterniflora stand was estimated as 78 kg N ha-1, compared to estimated N2 fixation on the mud surface of 22 kg N ha-1 and subsurface N2 fixation of 93 kg N ha-1. Subsurface N accretion was estimated to be of the order of 77 kg N ha-1. Mudsurface ARA (acetylene-reducing activity) exhibited a pronounced mid-season maximum, while subsurface ARA exhibited a general trend of increase from May to September, and then a decline as a function of falling temperature. Various experiments suggested that mud-surface ARA was associated largely with non-heterocystous blue-green algae and photosynthetic bacteria, while subsurface ARA was associated mainly with vital activity of S. alterniflora. Counts of various groups of bacteria indicated an enrichment of anaerobic (glucose-utilizing) and microaerophilic (malateutilizing) N2-fixing bacteria in the rhizosphere in comparison to non-rhizosphere soil. Treatment of roots with chloramine-t for 2 h reduced total numbers (plate count), anaerobic N2 fixers, and microaerophilic N2 fixers by factors of 357, 172, and 22, respectively, suggesting a relative enrichment of microaerophiles in the interior or endorhizosphere of the roots. ARA of excised roots was correlated with 14C-activity for roots from a plant previously exposed to 14CO2, and with branching and age of the roots.  相似文献   

11.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

12.
The magnitude and physiological characteristics of biological nitrogen fixation have been studied in the oligotrophic waters of the North pacific gyre. The filamentous blue-green algae Trichodesmium spp. and Richelia intracellularis were the important nitrogen-fixing phytoplankton. Most of the nitrogen fixation occurs in the upper 40 m of the water column, with detectable fixation as deep as 90 m, which corresponds to about the 1 % light depth. There was no evidence of photoinhibition of nitrogen fixation, although CO2 reduction was depressed slightly at the highest light levels. The rate of nitrogen fixation in the water column varied throughout the day, being highest in mid-morning and in late afternoon. Relatively high fixation rates were also found during periods of darkness. Elevated oxygen concentrations had a marked inhibitory effect on rates of nitrogen fixation, a pO2 of 0.4 atm causing a 75% inhibition. Data from studies of nitrogen fixation and assimilation rates of 15N-labelled nitrate, ammonium, and urea indicate that nitrogen fixation furnished about 3% of the total daily fixed nitrogen requirement for phytoplankton growth. Studies with isolated colonies of Trichodesmium spp. indicated that 100% of their nitrogen requirement was met by nitrogen fixation. Chemical composition of the Trichodesmium colonies showed that the C:N ratio was 4.1 and that their phosphorus content relative to carbon or nitrogen was much lower than that of the total particulate material in the water column. Elevated ratios of carbon: adenosine triphosphate (ATP) also suggest that phosphorus deficiency may be limiting the growth of Trichodesmium. The magnitude of nitrogen fixation in the gyre is seasonally dependent, with high rates in late summer and autumn. At these times the water column is stratified, with phosphate and nitrate barely detectable in the upper 100 m. Our data suggest that during these months of stratification, biological fixation of nitrogen amounts to about 33 g-at N/m2/day.  相似文献   

13.
Nitrogen fixation (acetylene reduction) at rates of up to 1.2 g N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green algae (Calothrix sp., Anabaena sp., and Phormidium sp.) were implicated as the organisms responsible for the nitrogenase activity. They occurred in a reduced microzone within the C. decorticatum thallus where nitrogen fixation was optimized. Nitrogen fixation did not affect the kinetic constants for ammonium uptake in C. decorticatum (Ks=12.0 M, Vmax=13.4 mol NH3 g dry wt-1 h-1) determined using the perturbation method. Nevertheless, C. decorticatum thalli which fixed nitrogen had internal dissolved nitrogen concentrations which were over 1.4 times higher than in non-fixing thalli. This suggests that if C. decorticatum does derive part of its nitrogen requirement from the blue-green algae which it harbors, the transfer does not involve competition between this process and the uptake of ambient ammonium.  相似文献   

14.
The life-history of the crown-of thorns starfish (Acanthaster planci) includes a planktotrophic larva that is capable of feeding on particulate food. It has been proposed, however, that particulate food (e.g. microalgae) is scarce in tropical water columns relative to the nutritional requirements of the larvae of A. planci, and that periodic shortages of food play an important role in the biology of this species. It has also been proposed that non-particulate sources of nutrition (e.g. dissolved organic matter, DOM) may fuel part of the nutritional requirements of the larval development of A. planci as well. The present study addresses the ability of A. planci larvae to take up several DOM species and compares rates of DOM uptake to the energy requirements of the larvae. Substrates transported in this study have been previously reported to be transported by larval asteroids from temperate and antarctic waters. Transport rates (per larval A. planci) increased steadily during larval development and some substrates had among the highest mass-specific transport rates ever reported for invertebrate larvae. Maximum transport rates (J max in) for alanine increased from 15.5 pmol larva–1 h–1 (13.2 pmol g–1 h–1) for gastrulas (J max in=38.7 pmol larva–1 h–1 or 47.4 pmol g–1 h–1) to 35.0 pmol larva–1 h–1 (13.1 pmol g–1 h–1) for early brachiolaria (J max in just prior to settlement=350.0 pmol larva–1 h–1 or 161.1 pmol g–1 h–1) at 1 M substrate concentrations. The instantaneous metabolic demand for substrates by gastrula, bipinnaria and brachiolaria stage larvae could be completely satisfied by alanine concentrations of 11, 1.6 and 0.8 M, respectively. Similar rates were measured in this study for the essential amino acid leucine, with rates increasing from 11.0 pmol larva–1 h–1 (or 9.4 pmol g–1 h–1) for gastrulas (J max in=110.5 pmol larva–1 h–1 or 94.4 pmol g–1 h–1) to 34.0 pmol larva–1 h–1 (or 13.0 pmol g–1 h–1) for late brachiolaria (J max in=288.9 pmol larva–1 h–1 or 110.3 pmol g–1 h–1) at 1 M substrate concentrations. The essential amino acid histidine was transported at lower rates (1.6 pmol g–1 h–1 at 1 M for late brachiolaria). Calculation of the energy contribution of the transported species revealed that larvae of A. planci can potentially satisfy 0.6, 18.7, 29.9 and 3.3% of their total energy requirements (instantaneous energy demand plus energy added to larvae as biomass) during embryonic and larval development from external concentrations of 1 M of glucose, alanine, leucine and histidine, respectively. These data demonstrate that a relatively minor component of the DOM pool in seawater (dissolved free amino acids, DFAA) can potentially provide significant amounts of energy for the growth and development of A. planci during larval development.  相似文献   

15.
Six ponds of age 3 were selected 45 km north from Suzhou in the Tailake region, and research conducted on nitrogen and phosphorus cycling in P. vannanmei(Penaeus vannanme) ponds and M. nipponense(Macrobrachium nipponense) hatchery ponds under normal management. Two treatments each had three replications. The results confirmed that feed was the major path of nitrogen and phosphorus input, each accounted for 61.24%(193.81 kg ha–1) and 81.08%(45.20 kg ha–1) of the total nitrogen and phosphorus input for P. vannanme ponds; the values for M. nipponense ponds were 43.93%(86.31 kg ha–1) and 57.67%(14.61 kg ha–1), respectively. Water pumped into ponds contributed on average 83.57 kg ha–1 nitrogen and 8.48 kg ha–1 phosphorus for P. vannanmei ponds, and 87.48 kg ha–1 nitrogen and 7.00 kg ha–1 phosphorus for M. nipponense hatchery ponds. Shrimp harvest recovered 102.81 kg ha–1 nitrogen (32.94% of the total nitrogen input) and 7.94 kg ha–1phosphorus (14.23% of the total phosphorus input) for P. vannanme ponds; and 43.94 kg ha–1 nitrogen and 4.46 kg ha–1phosphorus for M. nipponense hatchery ponds. The sum of nitrogen losses through volatilization, denitrification and sedimentation was 173.62 and 122.39 kg ha–1, 54.86% and 62.29% of the total nitrogen input for P. vannanme ponds and M. nipponense hatchery ponds, respectively. Sediment accumulated 41.46 and 14.63 kg ha–1 phosphorus, 74.37% and 64.85% of the total phosphorus input for P. vannanm ponds and M. nipponense hatchery ponds. Draining and seeping caused 40.06 kg ha–1 nitrogen (12.66% of total nitrogen input) and 6.36 kg ha–1 phosphorus (11.40% of total phosphorus input) loss to the surrounding water from P. vannanme ponds in 114 days; 30.14 kg ha–1nitrogen (15.34% of the total input) and 4.45 kg ha–1 phosphorus (17.57% of the total input) to channel water from M. nipponense hatchery ponds in 87 days, respectively. Countermeasures for sustainable pond management include improving feeds and feeding, sediment treatments, machine aerating, chemicals with no pollution, and integrated fish-shrimp cultivation. Management of water resources for pond and methods to reduce nitrogen and phosphorus loading into surrounding water from drainage are elucidated.  相似文献   

16.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

17.
The respiration and excretion rates of Calanus glacialis (Jaschnov) Copepodite Stages III, IV, V, and adult females from the drift-ice area east of Svalbard (Barents Sea) were measured in shipboard experiments during the period from 27 May to 13 June, 1983. The phytoplankton biomass and abundance varied considerably between localities, but these variations were not generally reflected in the respiration and excretion rates of the copepod. The respiration and excretion rates of C. glacialis at the ambient temperature of-1.8°C (average respiration rates of 0.95, 0.73, 0.57, and 0.60 l O2 mg-1 dry wt h-1 for Copepodite Stage III, IV, V, and adult females, respectively) were similar to those previously reported for other large-sized copepods from cold or temperate areas. Average respiration and excretion rates tended to decrease with incubation time or time after capture. Measurements on ten occasions within a period of 27 h after capture revealed excretion rates of ammonium ranging between 2.9 and 16.8 for C III, 3.7 and 21.1 for C IV, 1.3 and 28.4 for C V, and 1.6 and 18.7 for adult females, all expressed as nmol mg-1 dry wt h-1. In all experiments, excretion rates of inorganic phosphate varied between 0.7 and 1.5 (C III), 0.5 and 1.1 (C IV), 0.2 and 0.8 (C V), and 0.3 and 1.0 (adult females) nmol mg-1 dry wt h-1. Ratios of O:N, O:P, and N:P indicated that much of the metabolic energy was derived from catabolism of proteins. Comparison of the turnover rate of carbon and nitrogen showed, however, that nitrogen turnover was between 2.6 and 8.9 times higher than that of carbon. This may indicate that the copepods deaminate ingested protein, with the carbon skeleton of the amino acids subsequently being used in the synthesis of lipid compounds, possibly wax esters.  相似文献   

18.
Ecological surveys involving over 500 man-days between 1966 and 1969 indicate that the coral-eating sea star, Acanthaster planci, is a normal component of the coral reef community throughout the tropical Pacific, and that its abundance in the past has probably been underestimated. The sea star is not uncommon in certain environments, particularly back-reef and lagoon slopes. Sheltered, inner reefs are generally preferred over less protected reefs. Recently reported population explosions of A. planci at Guam and on the Great Barrier Reef of Australia appear to be isolated, widely-separated, local infestations of unknown cause. The infestation on the Great Barrier Reef has not spread beyond the area off Cairns and Innisfail. Approximately 40 of the more than 1000 reefs comprising the Great Barrier Reef complex have been infested heavily.  相似文献   

19.
Nitrogen pools and transformations and benthic communities at a Perna canaliculus farm and a nearby reference site without direct influence of marine farming in Kenepuru Sound, New Zealand, were compared on four dates between September 1982 and May 1983. The organic nitrogen pool in the top 12 cm sediment was 7.4 to 10.8 mol m-2 at the mussel farm and 6.1 to 8.9 mol m-2 at the reference site. The nitrate and nitrite pools were similar in both sediments, but the ammonium pool in the mussel farm sediment was about twice as high as in the reference sediment. In January, the sediment ammonium concentrations ranged from 418 nmol cm-3 (surface) to 149 nmol cm-3 (12 cm depth) at the mussel farm and from 86 to 112 nmol cm-3 at the reference site. The molar C:N ratio of the sediment organic matter was 6.2 to 7.2 at the mussel farm and 7.9 to 10.0 at the reference site. The molar N:P ratio of the sediment organic matter was 4.3 to 7.2 and 3.3 to 6.1 at mussel farm and reference site, respectively. The total nitrogen mineralisation rate in the top 12 cm sediment ranged from 21.7 to 37.1 mmol m-2 d-1 at the mussel farm and from 8.5 to 25.0 mmol m-2 d-1 at the reference site. Ammonium excretion by mussels was about 4.7% (January) and 7.4% (May) of the combined nitrogen mineralisation by mussels and sediment. The sediment-denitrification rate was 0.7 to 6.1 mmol m-2 d-1 at the mussel farm and 0.1 to 0.9 mmol m-2 d-1 at the reference site. In January, 76 and 93% of the nitrate reduced in the sediments were denitrified at the mussel farm and reference site, respectively. The denitrification rate on the mussel lines (determined on detritus-covered mussels) was twice the mussel farm sediment-denitrification rate and 10 times the reference sediment-denitrification rate. Total denitrification at the mussel farm was 21% higher than at the reference site. The loss of nitrogen through mussel harvest and denitrification was 68% higher at the mussel farm. The surface layers of both sediments contained about 75 mg m-2 chlorophyll a. Sediment phaeophytin levels were 52 mg m-2 at the reference site and 137 mg m-2 at the mussel farm. While the benthic infauna of the mussel-farm sediment consisted only of polychaete worms, the reference sediment contained also bivalve molluscs, brittle stars and crustaceans.  相似文献   

20.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号