首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopic method was used to measure organic functional groups and inorganic ions at Tonto National Monument (TNM), an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampling site in a rural area near Phoenix, Arizona. Functional groups and ions from common aerosol compound classes such as aliphatic and aromatic CH, methylene, methyl, aldehydes/ketones, carboxylic acids, ammonium sulfate and nitrate as well as functional groups from difficult to measure compound classes such as esters/lactones, acid anhydrides, carbohydrate hydroxyl and ethers, amino acids, and amines were quantified. On average, ~33% of the PM1.0 mass was composed of organic aerosol. The average (standard deviation) composition of the organic aerosol at TNM was 34% (6%) biogenic functional groups, 21% (5%) oxygenated functional groups, 28% (7%) aliphatic hydrocarbon functional groups (aliphatic CH, methylene and methyl) and 17% (1%) aromatic hydrocarbon functional groups. Compositional analysis, functional group correlations, and back trajectories were used to identify three types of events with source signatures: primary biogenic-influenced, urban-influenced, and regional background. The biogenic-influenced event had high concentrations of amino acids and carbohydrate hydroxyl and ether, as well as aliphatic CH and aromatic CH functional groups and qualitatively high levels of silicate. The urban-influenced events had back trajectories traveling directly from the Phoenix area and high concentrations of hydrocarbons, oxygenated functional groups, and inorganic ions. This aerosol characterization suggests that both primary emissions in Phoenix and secondary formation of aerosols from Phoenix emissions had a major impact on the aerosol composition and concentration at TNM. The regional background source had low concentrations of all functional groups, but had higher concentrations of biogenic functional groups than the urban source.  相似文献   

2.
A study was conducted to quantitatively screen the Inner Harbor Navigation Canal of Lake Pontchartrain for the presence of EPA priority pollutants and any other pollutants detected in significant concentration. Water column samples were collected at different depths and on the flood and ebb tides. Compounds identified include aliphatic and aromatic hydrocarbons, phthlates, phenols, alcohols, amines, pesticides, herbicides, aldehydes, quinolines, fatty acids, carboxylic acids. These compounds were detected at the parts-per-trillion level. The concentrations of the individual organics detected on the flood and ebb tides were not significantly different. The data derived from samples taken at two different depths suggest that the distribution of organics in the water column was homogeneous.  相似文献   

3.
Anaerobic degradation, an effective treatment process of textile industry effluent, generates sulfonated aromatic amines, which are carcinogenic, mutagenic, and resistant to microbial degradation. These aromatic amines can be effectively removed by oxidative polymerization catalyzed by peroxidase enzyme. The amines, generated in this study from the anaerobic reduction by zero-valent iron of two reactive azo dyes (Reactive Red 2 [RR2] and Reactive Black 5 [RB5]), were successfully removed (90%) by Arthromyces ramosus peroxidase (ARP). For better understanding of the process, enzymatic treatment of two model compounds, diphenylamine (DPA) and 2-amino-8-naphthol-3,6-disulfonic acid (ANDSA), were also studied. Diphenylamine has a similar diarylamine bond as RR2. The ANDSA has a similar structure as the dye reduction products. The secondary amine bond in DPA and RR2 were oxidized by ARP. Enzymatic reaction of sulfonated aromatic amines generated soluble colored compounds, which were removed by coagulant. Optimum reaction parameters were also determined.  相似文献   

4.
This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (?OH).  相似文献   

5.
回顾了硝基芳香化合物和偶氮化合物在厌氧条件下的生物脱毒、转化和矿化作用的研究成果。这些研究表明 ,由于硝基和偶氮基具有强烈的吸电子性 ,好氧条件下很难降解。但是 ,硝基和偶氮基芳香化合物在产甲烷菌群作用下较易还原脱毒 ,转化为相应的芳香胺类 ,其毒性要小几个数量级 ,因而有些毒性很高的芳香化合物废水可利用厌氧反应器处理 ,而且反应过程中发现一些芳香胺类化合物可被完全矿化 ,表明一些含氮芳香化合物可作为厌氧菌的碳源和能源 ,在厌氧条件下被完全生物降解。  相似文献   

6.
Sediment, sediment trap, Mytilus, Macoma and flounder samples from Northern Baltic (Finnish archipelago) have been analyzed for their contents of aliphatic and aromatic hydrocarbons. Androstane and hexaethylbenzene were used as internal standards. The analysis procedure consisted of alkaline degradation of fat, column fractionation of the two residue groups and final determination by glass capillary gas chromatography with FID for aliphatic hydrocarbon group and with mass spectrometry for non-polar aromatic residue group. The latter group was also determined by high pressure liquid chromatography. The residues due to oil pollution were distinguished from compounds of pure natural origin on the basis of statistical treatment of the determination results.  相似文献   

7.
D. Brown  P. Laboureur 《Chemosphere》1983,12(3):405-414
The paper describes the influence of test conditions on the aerobic biodegradability of the aromatic amines aniline, o-toluidine, p-anisidine, p-phenetidine, o-dianisidine and 3,3′-dichlorobenzidine. All six amines are shown to be biodegradable, though different results are obtained with different test conditions.  相似文献   

8.
To better understand interaction mechanisms of pine needles with persistent organic pollutants, single-solute and bi-solute sorption of phenanthrene and pyrene onto isolated cuticular fractions of pine needle were investigated. The structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy and solid-state 13C NMR. Polymeric lipids (cutin and cutan) exhibited notably higher sorption capabilities than the soluble lipids (waxes), while cellulose showed little affinity with sorbates. With the coexistence of the amorphous cellulose, the sorption of cutan (aromatic core) was completely inhibited, so the cutin components (nonpolar aliphatic moieties) dominated the sorption of bulk needle cuticle. By the consumption of the amorphous cellulose under acid hydrolysis, sorption capacities of the de-sugared fractions were dramatically enhanced, which controlled by the exposed aromatic cores and the aliphatic moieties. Furthermore, the de-sugared fractions demonstrated nonlinear and competitive sorption due to the specific interaction between aromatic cores and polycyclic aromatic hydrocarbon.  相似文献   

9.
The biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and seven fungi species, including imperfect strains and higher level lignolitic species, is compared in a 90-day laboratory experiment using a natural, not-fertilized soil contaminated with 10% crude oil. The natural microbial soil assemblage isolated from an urban forest area was unable to significantly degrade crude oil, whereas pure fungi cultures effectively reduced the residues by 26-35% in 90 days. Normal alkanes were almost completely degraded in the first 15 days, whereas aromatic compounds (phenanthrene and methylphenanthrenes) exhibited slower kinetics. Aspergillus terreus and Fusarium solani, isolated from oil-polluted areas, produced the more efficient attack of aliphatic and aromatic hydrocarbons, respectively. Overall, imperfect fungi isolated from polluted soils showed a somewhat higher efficiency, but the performance of unadapted, indigenous, lignolitic fungi was comparable, and all three species, Pleurotus ostreatus, Trametes villosus and Coriolopsis rigida, effectively degraded aliphatic and aromatic components. The simultaneous, multivariate analysis of 22 parameters allowed the elucidation of a clear reactivity trend of the oil components during biodegradation: lower molecular weight n-alkanes > phenanthrene > 3-2-methylphenanthrenes > intermediate chain length n-alkanes > longer chain length n-alkanes > isoprenoids approximately 9-1-methylphenanthrenes. Irrespective of the individual degrading capacities, all fungi species tested seem to follow this decomposition sequence.  相似文献   

10.
Environmental Science and Pollution Research - A green methodology was developed for the analysis of ten heterocyclic aromatic amines (HAAs) in biomass samples from cigarette combustion such as...  相似文献   

11.
M. Soler  J.O. Grimalt  J. Albaiges   《Chemosphere》1989,18(9-10):1809-1819
The qualitative distributions of aliphatic hydrocarbons in mussels adhered to the legs of an oil production platform (Amposta, Western Mediterranean) have evidenced local (diesel oil) and chronic inputs (middle East crude oils) as the main pollutant sources in the area. Quantitative data have shown that aromatic hydrocarbons are selectively accumulated with the age of mussels and are more evenly distributed through the water column. Background concentrations of petrogenic aliphatic hydrocarbons in mussels living in the vicinity of oil platforms have been established in the range of 25–40 ug/g dry weight.  相似文献   

12.
Zhu L  Ruan X  Chen B  Zhu R 《Chemosphere》2008,70(11):1987-1994
A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA+) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg−1. Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l−1. To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA+ (tetramethylammonium), BTMA+, HTMA+ (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg−1). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.  相似文献   

13.
Numerous organic compounds have been analyzed by coupled gas chromatography-mass spectroscopy (GC-MS) in flue gas after fluid bed combustion of four coal species from South Africa, Poland, Spitsbergen and Ruhr area (Germany). Polynuclear aromatic hydrocarbons, aliphatic hydrocarbons, chlorinated, heterocyclic and nitro compounds as well as phthalate esters are detected.  相似文献   

14.
Wang X  Cook R  Tao S  Xing B 《Chemosphere》2007,66(8):1476-1484
Sorption behavior of hydrophobic organic contaminants (HOCs) (i.e., pyrene, phenanthrene and naphthalene) by native and chemically modified biopolymers (lignin, chitin and cellulose) was examined. Lignins (native and treated) showed nonlinear sorption for all compounds studied, emphasizing their glassy character. Chitins and celluloses had linear isotherms for phenanthrene and naphthalene, illustrating the dominance of partitioning, while pyrene yielded nonlinear isotherms. Sorption capacity (K(oc)) of HOCs was negatively correlated with the polarity [(O+N)/C] of the biopolymers. Aromatic and alkyl+aromatic C percentages, rather than alkyl C content, demonstrated a better correlation with K(oc) values, indicating the importance of aromatic structures for HOC affinity. Hydrophobicity (K(ow))-normalized K(oc) values decreased sharply with increasing percentage of O-alkyl C versus total aliphatic C (O-alkyl C/total aliphatic C) or with polar C/(alkyl+aromatic C) ratio of the biopolymers until their values reached 80% and 4, respectively, illustrating the effect of surrounding polar groups on reducing affinity for HOCs. Overall, the results of this study highlight the role of spatial arrangement of domains within biopolymers in sorption of HOCs, and point to sorbent properties, such as functionality, polarity and structure, jointly regulating the sorption of HOCs in biopolymers.  相似文献   

15.
Hamblen EL  Cronin MT  Schultz TW 《Chemosphere》2003,52(7):1173-1181
Suspected estrogen modulators include industrial organic chemicals (i.e., xenoestrogens), and have been shown to consist of alkylphenols, bisphenols, biphenylols, and some hydroxy-substituted polycyclic aromatic hydrocarbons. The most prominent structural feature identified to be important for estrogenic activity is a polar group capable of donating hydrogen bonds (i.e., hydroxyl) on an aromatic system. The present study was undertaken to explore the estrogenic activity and acute toxicity of chemicals containing a weaker hydrogen bond donor group on aromatic systems, i.e., the amino substituent. There is a great deal of chemical similarity between aromatic amines (anilines) and aromatic alcohols (phenols). The chemicals chosen for the current study contained an amino-substituted benzene ring with hydrophobic constituents varying in size and shape. Thus, 37 substituted aromatic amines were assayed for estrogenic activity EC50 and acute toxicity LC50 using the Saccharomyces cerevisiae recombinant yeast assay. While the EC50 of 17-beta-estradiol occurs at the 10(-10) range, the aniline with the greatest activity had an EC50 of 10(-6) M. Thus, anilines, in general, are capable only of very weak estrogenic activity in this assay. A comparison of estrogenic potency between the present group of anilines and a set of previously tested analogous phenols indicated that anilines are consistently less estrogenic than phenols. A comparison of hazard indices (EC50/LC50) of these chemicals revealed that, for the vast majority of anilines, the EC50 and LC50 were in the same order of magnitude. More specifically, estrogenic activity of para-substituted alkylanilines increases with alkyl group size up to 5 carbons in length, after which the acute toxicity of the larger alkyl-substituents precluded the ability of the compound to induce the estrogenic response.  相似文献   

16.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

17.
J.L. Bove  J. Arrigo 《Chemosphere》1985,14(1):99-101
Gas phase benzyne generated from the high temperature pyrolysis of phthalic anhydride is reduced to benzene. This newly formed benzene is then free to react further with more benzyne to yield more complex aromatic hydrocarbons.  相似文献   

18.
Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min?1 under water-saturated conditions. Organic analyses were performed by GC–mass spectrometry, GC–flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60–70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.  相似文献   

19.
Microbial decontamination of hydrocarbon-polluted soil was paralleled with soil respiration measurements. About 1,500 tons of a loamy top soil were found to be contaminated with approximately 2000 mg/kg of aliphatic hydrocarbons, mainly oleic (C18:1) and linoleic acid (C18:2) found in the vicinity of a linoleum manufacturing and then a car dewaxing plant. The contaminated soil was analysed for dry matter, pH, dehydrogenase activity, electrical conductivity and nutrient content viz. nitrate, phosphorus and potassium, as well as a number of indigenous microbes. The soil was low in salt and nutrients. This paper describes the procedure and measures to decontaminate this bulk soil on site from approx. 2,000 to 500 mg of aliphatic hydrocarbons/kg dry matter by use of a nutrient emulsion, indigenous micro-organisms and aeration over 13 months. This 75% reduction in aliphatic hydrocarbons resulted in a concomitant carbon efflux, measured as soil respiration, and was used to calculate carbon fluxes.  相似文献   

20.
Lingbo L  Song Y  Congbi H  Guangbo S 《Chemosphere》2005,60(4):467-476
Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号