首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
为了证实和完善极限粒度理论,制备了煤粒度毫米级至厘米级(>10 mm)的5种粒度煤样,利用H-Sorb 2600T高温高压气体吸附分析仪对不同粒度的煤样进行等温吸附-解吸实验,并采用动扩散系数模型计算了煤粒瓦斯解吸扩散系数,分析不同粒度煤的扩散系数变化特征。研究结果表明:粒度毫米级煤样单位瓦斯解吸量和瓦斯解吸率随粒度的增大呈现逐渐减小的趋势;粒度厘米级煤样单位瓦斯解吸量和瓦斯解吸率随粒度的增大降幅较小;煤粒度在毫米级范围内,初始有效扩散系数D0e和平均有效扩散系数Dae随粒度的增大快速下降;煤粒度为厘米级时,初始有效扩散系数D0e和平均有效扩散系数Dae随粒度的增大基本保持不变;极限粒度理论正确可靠,煤的极限粒度小于10 mm。  相似文献   

2.
为研究表面活性剂十二烷基苯磺酸钠(SDBS)与CaCl_2复配液对煤体瓦斯解吸的抑制效应,选用新疆硫磺沟4—5号煤层煤样,采用HCA高压吸附解吸装置,测定干燥煤样、纯水、质量浓度2.5×10~(-2)g/m LSDBS及SDBS与CaCl_2复配液浸泡后煤样瓦斯解吸参数。研究表明:SDBS与CaCl_2复配液有效降低纯水的表面张力、煤样接触角,当质量浓度为2.5×10~(-2)g/m L的SDBS溶液与质量浓度为2.5×10~(-2)g/m L的CaCl_2溶液体积比为1∶3时,溶液表面张力降低至24.22 m N/m,煤样接触角降低至15.175°;随解吸时间增加,煤体瓦斯解吸量呈Langmuir关系逐渐增大后趋于稳定,瓦斯解吸速率迅速减小,当CaCl_2质量浓度为1.875×10~(-2)g/m L时,最大瓦斯解吸量为0.24 m L/g,最大解吸速率为0.8×10~(-2)m L/(g·s),对瓦斯解吸量及解吸速率的抑制效率最高。  相似文献   

3.
为了深入探讨水分对煤中瓦斯解吸特性的影响,采用试验和理论分析相结合的方法,按照原煤的固有粒度配比加工制作型煤,充分干燥后使其吸附平衡以模拟原始煤体,然后利用自制的试验装置实现水分自然进入含瓦斯煤,再测试水分润湿含瓦斯煤过程中样品缸内的瓦斯压力变化情况。结果表明:水分润湿含瓦斯煤过程中样品缸内瓦斯压力不断升高,水分能置换出煤中吸附瓦斯;相同吸附平衡压力下,煤样含水率越高,水分占据的有效吸附位越多,累计瓦斯解吸量越大,当煤样含水率达到煤的极限吸水率时,累计瓦斯解吸量达到极限值;同一含水率条件下,随吸附平衡压力增长,煤样吸附饱和度逐渐增加,水分越难进入煤体内部细微孔隙,造成累计瓦斯解吸量逐渐增加,但增幅逐渐减小,随吸附平衡压力不断升高,极限瓦斯解吸量趋于一定值。  相似文献   

4.
为揭示不同温度下瓦斯吸附-解吸-渗流全过程煤体变形的差异性,应用自主研发的煤体瓦斯流固耦合试验系统,研究三轴应力加载下瓦斯吸附-解吸-渗流及全过程煤体变形随温度变化的响应特征。试验结果表明:瓦斯吸附阶段,煤体变形量与吸附时间呈Langmuir型上升变化;瓦斯解吸阶段,煤体变形量与解吸时间呈指数型衰减趋势;瓦斯渗流阶段,煤体变形量与时间呈幂函数上升趋势。瓦斯吸附量、渗透率及过程中煤体变形量均随温度升高而降低,瓦斯解吸率随温度升高而增大;煤体变形量与瓦斯吸附量、解吸量、渗透率呈正相关关系。温度效应对全过程煤体变形具有显著影响。  相似文献   

5.
基于扩散理论和热力学基本原理建立了瓦斯解吸过程温度变化公式,以及温度变化与瓦斯膨胀能、瓦斯解吸量的关系式,在此基础上研究了煤粒粒度、瓦斯压力、吸附常数a、扩散系数对解吸过程温度变化的影响及温度变化与煤与瓦斯突出的关系.结果表明:随煤粒粒度减小,瓦斯压力、瓦斯含量增大,扩散能力增强,瓦斯解吸引起的温度下降幅度增大.随解吸过程中温度降低,瓦斯解吸量、瓦斯膨胀能呈明显增大趋势,由此可见,解吸过程中温度下降幅度越大,煤层煤与瓦斯突出危险性越大.  相似文献   

6.
抑爆粉剂的参数指标是影响隔抑爆装置抑制瓦斯爆炸效果的重要因素之一。通过20 L球形爆炸特性实验装置对多种不同抑爆粉剂浓度及粒度条件下的瓦斯爆炸特性参数进行了测试。研究表明:随着抑爆剂浓度的逐渐增加,瓦斯爆炸最大压力降低,最大压力上升速率降低,压力到达峰值时间延迟;在20 L密闭环境,粉剂粒度<15 μm的条件下,当抑爆粉剂浓度增加到225 g/m3时,瓦斯混合气体被完全惰化,失去爆炸性;在15~80 μm抑爆粉剂粒度范围内,随着粒度的减小,抑爆性能先减弱后增强,在抑爆粉剂浓度为200 g/m3时,15 μm 与70~80 μm粉剂粒度最大爆炸压力分别下降了19.8%,17.8%,而40~50 μm粒度爆炸压力下降了6.4%。  相似文献   

7.
王志军      李宁    魏建平    马小童 《中国安全生产科学技术》2017,13(4):76-80
为揭示煤中瓦斯解吸过程中加载微波作用对解吸特性的影响,分析探讨了微波辐射促进煤层瓦斯解吸的基本原理,研制了微波作用下煤中瓦斯解吸实验装置,对微波间断加载作用及无微波作用条件下煤中瓦斯解吸特性进行了对比实验研究。实验表明:微波作用对煤中瓦斯解吸具有明显的促进作用,微波作用时间越长,解吸量越大,解吸率越高。在微波作用40 s条件下,微波间断加载作用使得煤样瓦斯解吸量增加290%,解吸率达到87%,解吸速度最大提高率为1 020%。  相似文献   

8.
为了研究微波场连续-间断辐照作用对颗粒煤瓦斯解吸特性的影响,通过自制的实验装置,分析研究了微波连续-间断作用10 ,20 ,40 s及无微波作用下的构造煤颗粒瓦斯解吸量及解吸速率变化规律,并采用水浴加热装置模拟微波产生的热效应,研究了微波热效应在促进煤粒瓦斯解吸中的影响。实验结果表明:在微波连续作用时间内,瓦斯解吸量和解吸速率均迅速增大,然而随着时间的延长衰减较快,最终瓦斯解吸量趋向于一定值,微波连续-间断辐照作用下的瓦斯解吸量是无微波加载作用下的1.83~3.93倍;微波产生的热效应对瓦斯解吸影响较为显著,权重达82%以上,然而其非热效应的影响也不可忽视。实验方法与结果可望为促进构造瓦斯解吸、降低煤层突出危险性提供参考。  相似文献   

9.
水分是含瓦斯煤粒扩散规律的重要影响因素之一,运用自制设备,试验研究当水分小于等于平衡水时,3种变质程度煤样的瓦斯扩散量、扩散速度和扩散系数随水分、扩散时间的变化规律;基于气体在多孔介质内的吸附解吸理论和Fick扩散定律,分析水分对瓦斯在煤粒内扩散动力参数和动态过程的影响机理。结果表明,在不大于煤样平衡水分条件下,高、中、低变质程度煤样的瓦斯极限扩散量、解吸速度和瓦斯扩散系数随水分增加而显著降低,同一种变质程度干燥煤样的瓦斯扩散系数基本是平衡水分煤样的3~5倍;水分的增加降低了煤粒内的瓦斯初始质量浓度和扩散系数,进而大幅度降低了瓦斯扩散速度;水分子更容易占据煤基质表面吸附位,致使煤对瓦斯的吸附量减少,水分子在煤粒内表面发生多层吸附,而堵塞部分的瓦斯分子在煤粒内表面扩散,缩小了扩散通道,增大了瓦斯扩散阻力,导致含瓦斯煤粒的瓦斯扩散系数减小。  相似文献   

10.
为深入研究突出危险煤瓦斯解吸特征,以块状型煤为研究对象,开展瓦斯等温吸附和解吸试验,分析解吸试验过程中最小平衡压力对解吸过程吸附常数的影响,探讨瓦斯吸附和解吸过程的可逆性、合理的解吸试验压力条件及其数据处理方法。结果表明:最小平衡压力对解吸过程吸附常数拟合结果影响较大;突出危险型煤在实验室条件下,等温吸附/解吸瓦斯过程有典型的可逆性,解吸过程有滞后性;等温解吸曲线仍服从Langmuir方程;为使解吸试验结果可靠性更高,拟合中应考虑解吸完全时的状态,即解吸平衡压力为0 MPa、残余吸附量为0 m L/g时的数据;解吸试验过程中,最小平衡压力不宜高于0.51 MPa。  相似文献   

11.
为了研究分析不同含水率对煤粒瓦斯扩散的影响,以平煤八矿构造煤为研究对象,利用瓦斯扩散试验装置,测定不同含水率条件下煤粒瓦斯解吸量,对比分析不同扩散模型,优选适合描述含水煤粒瓦斯解吸全过程的扩散模型,进而研究不同含水率对煤粒瓦斯扩散系数的影响。研究结果表明:相同时段下,干燥煤样的累计瓦斯解吸量最大,随着含水率增加煤样的累计瓦斯解吸量越来越小,水分的增加封堵了瓦斯扩散通道,在煤微孔隙内产生一定的蒸气压增大了瓦斯扩散的阻力使得单位时间内的瓦斯解吸量不断减小;通过3种扩散模型的对比发现幂函数模型在误差大小和稳定性方面都优于其他2种模型;利用该幂函数模型对扩散系数进行计算得出4种含水率对煤粒扩散系数的影响发现,扩散系数均经历前期快速下降和后期缓慢下降2个阶段,扩散系数随含水率的增大而减小且扩散速率趋于稳定。  相似文献   

12.
为研究CO2驱替CH4过程中注气压力对气体解吸特性的影响,采用自主搭建的驱替实验平台,在0.6,0.8,1.0 MPa不同注气压力下进行驱替实验,研究CO2驱替CH4过程中煤层温度、气体浓度、置换效率和渗透率等变化规律。实验结果表明:提高CO2注气压力可提高CO2置换驱替煤层CH4的效果。随着注气压力增大,CH4累计解吸量增大,CO2突破时间越短,CO2封存量越大,置换效率升高,驱替比下降。注气压力为0.6,0.8,1.0 MPa时,CH4累计解吸量分别为90.2,94.1,97.8 L;CO2封存量分别为19.73,19.92,20.21 mL/g;置换效率由76.9%上升到80.2%再到82.9%,驱替比由3.28下降到3.17再到3.09。注气驱替CH4过程中煤层温度升高,可分为低速升温、高速升温和趋于平缓阶段。煤层温度最高变化量分别为9.4,11.5,12.7 ℃。同一注气压力下,煤层渗透率变化可分为缓慢增长、急剧下降和趋于稳定阶段。  相似文献   

13.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

14.
为了获取多尺度粒煤在不同初始吸附平衡压力条件下的甲烷扩散特征,完成了0.25~1.00 mm,>1.00~3.00 mm,>3.00~6.00 mm和>6.00~10.00 mm这4种粒径粒煤在1.0 和3.0 MPa初始吸附平衡压力下的甲烷扩散实验,并考察了经典扩散模型对各实验在0~10 min,0~60 min,0~180 min时间段的扩散拟合效果。研究结果表明:同实验时间,扩散率表现为随着粒径的减小呈增大趋势,0.25~1.00 mm相较>6.00~10.00 mm粒径粒煤最大增大了73%;经典扩散模型不适用于描述甲烷在粒煤中的全阶段扩散,粒径越小拟合精度越低,仅对于初始扩散阶段(0~10 min)拟合效果较好;同初始吸附平衡压力,初始扩散系数D值随着粒径的增大呈递增趋势,>6.00~10.00 mm相较0.25~1.00 mm粒煤扩散系数增大至7倍。不同尺度粒煤的瓦斯扩散特征,为煤层气达产、稳产、增产提供了储层改造方向。  相似文献   

15.
为研究常用瓦斯解吸经验模型对解吸量预测准确性,基于容量法试验测定长时间的煤屑瓦斯累计解吸量,通过截取不同时段的瓦斯解吸量数据回归拟合得到常用解吸经验模型参数,并将其代入模型中计算出瓦斯解吸量与试验测定量进行对比。研究结果表明:各常用经验模型公式对不同时间段数据拟合都表现出较好的效果;巴雷尔式不适合用于煤屑的瓦斯解吸预测;指数型经验模型公式计算得到曲线受制于拟合数据时间段长短,在拟合时间段后很快趋于平直而低估累计瓦斯解吸量;乌斯季诺夫式适合用于短时间煤屑瓦斯解吸数据推算长期瓦斯解吸量;重庆-文特式适合用于预测短期瓦斯解吸量,而利用较长时间段瓦斯解吸量数据推算煤屑瓦斯解吸量宜采用艾黎式。该研究成果对于煤的瓦斯涌出及煤层气产能预测有着重要实际意义。  相似文献   

16.
为研究取芯管取芯过程中压力与温度对损失瓦斯量的影响,以及t法的偏差,利用自主研发的取芯管取芯过程模拟测试装置,基于模拟试验的相似性,开展不同加热功率下取芯过程模拟试验与室温(30 ℃)对比,以及变温条件下不同吸附压力取芯过程模拟试验。结果表明:前30 min煤芯瓦斯解吸曲线符合Qt=a+b/[1+(t/t0)c]。吸附压力一定时,取芯过程模拟测试的煤芯瓦斯解吸率均大于室温下的对比测试,3~16 min(退钻过程)温度对损失量的影响大于0~3 min(取芯过程);随着加热功率的增加,煤芯瓦斯解吸量增大,煤芯损失瓦斯量的模拟值亦增大;t法推算值与模拟值的绝对误差随加热功率的增大而增大,相对误差在65.08%~70.79%;加热功率一定时,随着吸附压力的增加,煤芯瓦斯解吸量愈大,煤芯损失瓦斯量t法推算值增大,模拟值亦增大;t法推算值与模拟值的绝对误差随吸附压力的增大而增大,相对误差在68.21%~72.13%。  相似文献   

17.
为提高煤巷突出危险性预测的准确性,基于摩尔库伦准则,建立煤巷突出平衡方程,探究煤巷突出发生条件;通过COMSOL Multiphysics模拟软件探究钻孔瓦斯涌出量和瓦斯压力的关系;利用ZTL20/1000-Z型矿用隔爆型连续流量法煤层巷道突出预测装置,以薛湖煤矿二煤层为试验对象,进行煤巷突出危险性预测试验研究。结果表明:钻孔瓦斯涌出量与瓦斯压力呈线性关系,钻孔初始瓦斯流量可以作为预测煤巷突出危险性的敏感指标;最大流量峰面积、钻屑量和钻孔瓦斯涌出初速度变化趋势基本相同,且最大流量峰面积取值范围较广;最大流量峰面积突出临界值取值为59.30 (L·m2)/min。  相似文献   

18.
王登科      王洪磊    魏建平     《中国安全生产科学技术》2016,12(7):10-15
为研究颗粒煤瓦斯解吸规律,基于Fick定律建立了颗粒煤的多扩散系数瓦斯解吸 模型,完成了颗粒煤瓦斯解吸模型的数值试验。引入了非负约束最小二乘法反演算法( NNLS),通过试验数据反演得出颗粒煤的扩散参数的B谱,从而确定出颗粒煤瓦斯扩散 系数D的准确范围。研究结果表明:颗粒煤瓦斯解吸符合Fick扩散定律,颗粒煤的多扩 散系数瓦斯解吸模型能很好地解决单一扩散系数模型的扩散系数随时间衰减的问题,准 确反映了颗粒煤瓦斯解吸规律,单一扩散系数瓦斯解吸模型只是多扩散系数瓦斯解吸模 型的一个特例;NNLS是一种有效的反演算法,利用NNLS方法可以准确反演出颗粒煤瓦斯 解吸过程中的扩散参数的B谱,通过B谱可方便计算出颗粒煤的瓦斯扩散系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号