首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous work, the primary sludge from wastewater treatment plants was shown to contain a considerable amount of cellulose (about 20%, based on suspended solids) owing to the discharge of toilet paper. For the purpose of using the cellulose as a biomass resource, this study examined a simple method for its recovery. When fibrous cellulose was suspended in 0.3% sulfuric acid and autoclaved at 130°C for 60 min, 85%–88% of the initial solids remained without dissolving. Under these conditions, an activated sludge sample not containing cellulose was strongly hydrolyzed and only 7% of the initial solids remained. The prescribed amounts of cellulose added to the activated sludge sample were quantitatively recovered by the autoclaving treatment. In the treatment of primary sludge containing >20% cellulose, residual solids with relatively high levels of cellulose (>69%) could be obtained. The results indicate that the method proposed here could recover cellulose practically from waste sewage sludge for biomass utilization. Received: July 17, 2000 / Accepted: July 4, 2001  相似文献   

2.
从生活污水处理工艺出发介绍污泥产生的环节,探究污泥传统处置方法和资源化处置方法,同时对污泥源头减量化方法做了详细论述,最后分析了污泥处置成本的影响因素,对污泥环保处置提供参考与帮助.  相似文献   

3.
Anaerobic co-digestion of coffee waste and sewage sludge   总被引:1,自引:0,他引:1  
The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste.  相似文献   

4.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

5.
This study investigated the feasibility of using fresh activated sewage sludge as inoculum for the microbial valorization of segregated municipal solid waste and evaluated the quality of organic soil amendment generated. Organic fraction of municipal solid waste, which consisted of vegetative (vegetable, fruit and flower) wastes was seeded with activated sewage sludge and processed by rapid aerobic microbial treatment. Efficacy of microbial valorization process and quality of final product were assessed by physico-chemical analysis. Suitability of final product was assessed with regard to heavy metal content, pesticide residues, microbiological quality and phytotoxicity. Quality of the soil amendment generated was compared with the control product generated with a commercial microbial inoculum. Phytotoxicity experiments indicated the stimulatory effect of sewage sludge seeded soil amendment on plant growth but inhibition was observed in closed growth test due to the evolution of gaseous phytotoxic agents. The study suggests that segregated municipal solid waste can be effectively valorized with activated non-dewatered sewage sludge as inoculum and the quality of soil amendment generated was comparable to compost intended for unrestricted applications.  相似文献   

6.
The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.  相似文献   

7.
Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator.  相似文献   

8.
The purpose of this study is to introduce an efficient drying method named “fry-drying technology” for the treatment of sewage sludge. The basic principle of this method lies in the rapid escape of moisture from sludge material through its pores into the oil medium driven by the strong pressure gradient formed between sludge and oil media. This beneficial pressure distribution for moisture transfer can be established by the subtle combination of the difference of physical properties of specific heat and boiling temperature between water and oil. In order to determine the physical characteristics of this fry-drying technology, a series of experiments were performed in which important parameters, such as heating oil temperature, drying time, oil type, and sludge size, were varied. Numerical calculations using a single solid spherical particle model without any porosity were used to resolve the particle size effect associated with sludge drying.  相似文献   

9.
Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction.  相似文献   

10.
System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na+. For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na+ concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17 d?1 and 0.50 d?1, respectively. Experimental data of co-digestion were in good conformity to the predictions of the model.  相似文献   

11.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

12.
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain.  相似文献   

13.
付雄  刘敏  陈滢 《化工环保》2017,37(3):276-281
从污泥灰中磷的提取、磷与重金属的分离和磷产品的制备3方面综述了国内外湿化学法回收污泥灰中磷的研究进展,重点分析了磷提取过程中的各种影响因素,并对今后污泥灰中磷的湿化学法回收技术的研究方向进行了展望。指出:利用萃取的方法将提取液中的无机强酸萃取出来并回收重复利用,可大幅降低酸的消耗量;在回收磷的同时可研究回收不同种类金属的方法,尤其是价值较大的重金属,以进一步提高污泥灰资源的回收价值。  相似文献   

14.
Acidic bioleaching of heavy metals from sewage sludge   总被引:2,自引:0,他引:2  
The overall objective of this study was to evaluate the use of controlled bio-acidification prior to land application as a decontamination process to remove heavy metals from sludge. The sulfur-oxidizing bacteria were naturally available in the sludge samples and were activated by providing sulfur and aeration at 28°C–30°C. Activation resulted in bio-acidification to pH 2 within 5–11 days. Successive inoculation of fresh sludges with 5% acidified samples reduced the acidification time to 2–3 days in most samples. Bio-acidification resulted in dissolving significant quantities of heavy metals from all sludge types tested. The maximum solubilization results were: 86%–97% for Ni; 48%–98% for Pb; 26%–71% for Cr; 18%–91% for Zn; 16%–90% for Cu; 7%–60% for Cd. Limited metal solubilization results were observed in the various control samples that accompanied the bio-acidified samples. The leaching results in the control samples were limited to 2%–19% for Ni, 0%–7% for Pb, 0%–5% for Cr, 0.3%–4% for Zn, 0.2%–4% for Cu and 0%–3% for Cd. The results confirmed that Ni and Pb were the easiest metals to dissolve from the various sludge types. On the other hand, the lowest solubilization results were observed for Cu and Cd, and moderate solubilization results were achieved for Cr. The bio-acidification process resulted in moderate gains in terms of improving the suitability of tested sludges for land application. Received: April 19, 1999 / Accepted: November 4, 1999  相似文献   

15.
Lightweight aggregate made from sewage sludge and incinerated ash   总被引:1,自引:0,他引:1  
In this study, sewage sludge ash (SSA), with similar characteristics to expansive clay, was used as the principal material and sewage sludge (SS) as the admixture to sinter lightweight aggregate and to study the influences of raw material composition on pelletising, sintering effect and aggregate properties. Results showed that both SS and SSA could be sintered to produce synthetic aggregates individually or mixed. Increasing the amount of SS would decrease the pelletising ratio. Under the consideration of energy saving, the mixture of SSA was better for sintering normal weight aggregate. On the contrary, the mixture that added 20-30% of SS was more adequate to make lightweight aggregates. Adding SS would enhance the oxidation-reduction reaction and lower the bulk density and sintering temperature of aggregates to save energy. Sintering temperature affected the properties of sewage sludge ash lightweight aggregate (SSALA) more than retention period did. Prolonging the retention period could improve bloating effect.  相似文献   

16.
The fate and effect of the herbicides linuron and metribuzin on the co-composting of sewage sludge and green waste were addressed in this work. The experiments were conducted in metal cubic containers of 1.0 m3 volume simulating a windrow composting system. A mixture of sludge and green waste was prepared at a ratio of 1:5 v/v. The mixture was split in four equal parts and the two herbicides were added, using a pressure sprayer, as sole or mixed pollutant in each of the three mixtures. The forth mixture was composted without any addition of herbicide, to serve as control. Temperature, physicochemical characteristics, herbicide concentration, carbon dioxide emission, methane emission and microbiological parameters were measured either daily or every time the mixtures were turned, for a period of 80 days. Both herbicides’ concentration decreased significantly resulting in removal efficiencies of 99.1–99.7% and 95.8–96.0% for linuron and metribuzin, respectively. Incubation of microbiologically inactive mixtures at a temperature schedule following the spontaneous temperature evolution in the composters resulted in very little (1–11%) decomposition for both herbicides. Comparison of the variation of physicochemical parameters and microbial populations during composting indicated that both herbicides did not affect the composting process.  相似文献   

17.
Journal of Material Cycles and Waste Management - This study aims to investigate the methanogenic community of anaerobic mono-digestion of sewage sludge (SL-digester) and co-digestion of sewage...  相似文献   

18.
Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.  相似文献   

19.
Although production of sewage sludge increases every year, its proper treatment has only been recently raised as a new issue, as current landfill and ocean dumping arrangements are expected to become increasingly difficult to manage in the future. The Korean Ministry of Environment plans to diversify its processing facilities and expand its processing systems by 2011, with the purpose of processing all sludge produced in Korea. According to this plan, incineration (including incineration of municipal wastes) will process 30% of the entire sewage sludge throughout the country in 2011. This study reviews the characteristics of PAH, which is one of the organic substances found in sewage sludge during the incinerating process. The total amount of PAH produced from sewage sludge incineration was found to be 6.103 mg/kg on average, and investigation performed on 16 PAHs of inlets and outlets of the air control devices at five full-scale incineration facilities showed that concentrations of the PAHs on the inlet and on the outlet ranged from 3.926 to 925.748 microg/m(3) and from 1.153 to 189.449 microg/m(3), respectively. In the case of the incineration facility fed with municipal waste (95%) and sewage sludge (5%), the total of the PAH emissions concentration was higher than that found at the incineration facilities used exclusively to treat sewage. The combustion of waste vinyl and plastics contained in municipal waste fed into the facility might contribute to the high levels of PAHs in the stack gas. However more investigation is needed on the production mechanism of PAHs at different operating conditions of the incineration facilities, such as the types of waste, and other relevant factors.  相似文献   

20.
Pyrolysis of urban plant sewage sludge has been demonstrated to be an effective way to produce fuel gas. However, a complete disposal of this particular waste is not achieved if the solid residues from the treatment are not considered. In this paper we discuss the feasibility an integrated pyrolysis/vitrification/sintering approach, aimed at a “full” disposal: the pyrolysis residues are first converted into a glass, then transformed into glass–ceramics, by simple viscous flow sintering treatments, with or without additions of inexpensive recycled glasses and kaolin clay. The obtained products were demonstrated to constitute an alternative to natural stones, in terms of both mechanical strength and chemical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号