首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Successful nonpoint source pollution control using best management practice placement is a complex process that requires in‐depth knowledge of the locations of runoff source areas in a watershed. Currently, very few simulation tools are capable of identifying critical runoff source areas on hillslopes and those available are not directly applicable under all runoff conditions. In this paper, a comparison of two geographic information system (GIS)‐based approaches: a topographic index model and a likelihood indicator model is presented, in predicting likely locations of saturation excess and infiltration excess runoff source areas in a hillslope of the Savoy Experimental Watershed located in northwest Arkansas. Based on intensive data collected from a two‐year field study, the spatial distributions of hydrologic variables were processed using GIS software to develop the models. The likelihood indicator model was used to produce probability surfaces that indicated the likelihood of location of both saturation and infiltration excess runoff mechanisms on the hillslope. Overall accuracies of the likelihood indicator model predictions varied between 81 and 87% for the infiltration excess and saturation excess runoff locations respectively. On the basis of accuracy of prediction, the likelihood indicator models were found to be superior (accuracy 81‐87%) to the predications made by the topographic index model (accuracy 69.5%). By combining statistics with GIS, runoff source areas on a hillslope can be identified by incorporating easily determined hydrologic measurements (such as bulk density, porosity, slope, depth to bed rock, depth to water table) and could serve as a watershed management tool for identifying critical runoff source areas in locations where the topographic index or other similar methods do not provide reliable results.  相似文献   

2.
ABSTRACT: A distributed watershed model was developed to mathematically simulate overland and channel flow for a single-event storm. The modeled watersheds in the study were subdivided into rectangular grid elements. All hydrologically significant parameters, such as land slope, rainfall and precipitation excess, were assumed to be uniform within each element. The Green-Ampt method was adopted to generate precipitation excess for each element during the simulation period. A two-dimensional diffusion wave model was used for overland flow routing and an iterative Alternative Direction Implicit scheme was used to solve the simultaneous overland flow equations. Once the overland flow became inflow to the channel, a one-dimensional dynamic wave flood routing technique, based on a four-point, implicit, non-linear finite difference solution of the St. Venant equation of unsteady flow, was applied. A limited number of comparisons were made between simulated and observed hydrographs for areas of about one square mile. Given the appropriate parameters, the model was able to accurately simulate runoff for single-event storms. This paper describes a distributed watershed model developed to simulate overland and channel flow. Comparisons were made between simulated and observed hydrographs for three watersheds. The model was able to accurately simulate the runoff for single-event storms using 61-m by 61-m (200 ft by 200 ft) watershed grid elements.  相似文献   

3.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

4.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

5.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

6.
Wildfire can significantly change watershed hydrological processes resulting in increased risks for flooding, erosion, and debris flow. The goal of this study was to evaluate the predictive capability of hydrological models in estimating post‐fire runoff using data from the San Dimas Experimental Forest (SDEF), San Dimas, California. Four methods were chosen representing different types of post‐fire runoff prediction methods, including a Rule of Thumb, Modified Rational Method (MODRAT), HEC‐HMS Curve Number, and KINematic Runoff and EROSion Model 2 (KINEROS2). Results showed that simple, empirical peak flow models performed acceptably if calibrated correctly. However, these models do not reflect hydrological mechanisms and may not be applicable for predictions outside the area where they were calibrated. For pre‐fire conditions, the Curve Number approach implemented in HEC‐HMS provided more accurate results than KINEROS2, whereas for post‐fire conditions, the opposite was observed. Such a trend may imply fundamental changes from pre‐ to post‐fire hydrology. Analysis suggests that the runoff generation mechanism in the watershed may have temporarily changed due to fire effects from saturation‐excess runoff or subsurface storm dominated complex mechanisms to an infiltration‐excess dominated mechanism. Infiltration modeling using the Hydrus‐1D model supports this inference. Results of this study indicate that physically‐based approaches may better reflect this trend and have the potential to provide consistent and satisfactory prediction.  相似文献   

7.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

8.
Soil phosphorus (P) concentrations typically are greater in surface soils compared with subsurface soils. Surface soils have a greater chance to interact with runoff leading to P transport to streams. The thin surface layer where P concentrates is referred to as the mixing layer denoting where water and chemicals mix during transport. The objective of this study was to evaluate the effect of hydrologic flow paths on soluble reactive phosphorus (SRP) loss at two temperatures. Laboratory flumes were built to simulate infiltration, return flow, saturation excess, and interflow, and subsequent interaction with the mixing layer. The sandy loam soil in the flumes was kept at saturation throughout all experiments, so that biochemical effects were normalized. Flow through the flumes was maintained at 3.6 mm/h for 24 to 99 h (at 6 and 25 degrees C) with water entering and exiting the flumes at different ports (to simulate different flow paths) or as low intensity rainfall. Experiments were performed with and without an artificially created P-enriched surface layer (5 mm thick, total P increased from 1010 mg/kg in the original soil to 2310 mg/kg by addition of dissolved phosphate). Results indicated that (i) SRP release was greater in soil with a mixing layer than in soil without a mixing layer; (ii) SRP release was greater during experiments at 25 degrees C than at 6 degrees C; (iii) at 25 degrees C, SRP release was greatest when water traversed the mixing layer in the upward direction (i.e., in return flow), and by flow parallel to the mixing layer (i.e., surface runoff); and (iv) at 6 degrees C, SRP release in subsurface flow following rainfall was slightly greater than in return flow and infiltration. Our results confirmed the presence of a variable, temperature-dependent desorption process when runoff water interacted with the mixing layer. Our findings have important implications for how different water flow paths in and over the soil interact with P in the soil, and what the ultimate concentration will be in runoff and interflow.  相似文献   

9.
Hillslope vegetated buffers are recommended to prevent water pollution from agricultural runoff. However, models to predict the efficacy of different grass buffer designs are lacking. The objective of this work was to develop and test a mechanistic model of coupled surface and subsurface flow and transport of bacteria and a conservative tracer on hillslopes. The testing should indicate what level of complexity and observation density might be needed to capture essential processes in the model. We combined the three-dimensional FEMWATER model of saturated-unsaturated subsurface flow with the Saint-Venant model for runoff. The model was tested with data on rainfall-induced fecal coliforms (FC) and bromide (Br) transport from manure applied at vegetated and bare 6-m long plots. The calibration of water retention parameters was unnecessary, and the same manure release parameters could be used both for simulations of Br and FC. Surface straining rates were similar for Br and bacteria. Simulations of Br and FC concentrations were least successful for the funnels closest to the source. This could be related to the finger-like flow of the manure from the strip along the bare slopes, to the transport of Br and FC with manure colloids that became strained at the grass slope, and to the presence of micro-ponds at the grassed slope. The two-dimensional model abstraction of the actual 3D transport worked well for flux-averaged concentrations. The model developed in this work is suitable to simulate surface and subsurface transport of agricultural contaminants on hillslopes and to evaluate efficiency of grass strip buffers, especially when lateral subsurface flow is important.  相似文献   

10.
ABSTRACT: Significant errors in estimating surface runoff and erosion rates are possible if a watershed is assumed to contribute runoff uniformly over the entire area, when actually only a portion of the entire area may be contributing. Generation of overland flow on portions of small semiarid watersheds was analyzed by three methods: an average loss rate procedure, a lumped-linear model, and a distributed-nonlinear model. These methods suggested that, on the average, 45, 60, and 50% of the drainage area was contributing runoff at the watershed outlet. Infiltrometer data support the partial area concept and indicate that the low infiltration zones are the runoff source areas as simulated with the distributed-nonlinear model.  相似文献   

11.
ABSTRACT: An envelope of steady-state surface runoff response for a hilislope is established in terms of the probability distribution and spatial arrangement of individual point infiltration capacities and the rainfall intensity. Minimum overland flow is shown to occur when point infiltration capacities are ordered with the highest at the slope bottom, while maximum overland flow occurs when the highest point capacities are at the top of the slope. Equations for envelope curves are developed for both continuous distributions and discretely sampled data; examples for each case are given. Use of the analysis as a rainfall-runoff model is also discussed.  相似文献   

12.
ABSTRACT: Variable Source Areas (VSAs) are zones with water saturated soils in forested wetlands fringing streams and creeks. Runoff from these areas is generated by saturation excess after a shallow water table rises and inundates the ground surface. In humid regions, like Florida and the Southeast, VSAs are believed to produce most of the runoff in shallow water table environments. Modeling the spatial extent and temporal fluctuation of a VSA is difficult because the formation of a VSA depends on a number of hydrological and morphological factors like rainfall intensity, soil texture, water table depth, and topographic attributes of the terrain. In this paper, we couple a digital elevation model with a two‐dimensional variable saturation model to illustrate the formation of a VSA at the hillside scale. The topography derived from the digital elevation model forms the upper domain geometry for the two‐dimensional finite element simulations of variable saturated flow. The objectives are: (1) to model the spatial and dynamic fluctuation of a VSA, and (2) to understand the roles of rainfall variability and terrain attributes on the formation of a VSA. Results show that hillsides with shallow water table depths, low saturated hydraulic conductivity, mild slopes, and concave slope curvature were more susceptible to runoff from a variable source. Runoff from a variable source showed little sensitivity to rainfall intensity. In general, landscapes with steep slopes generated a small VSA and a seepage face that vanished rapidly with time. In contrast, flat terrains are more amenable to VSA and retain ground surface inundation for longer periods of time.  相似文献   

13.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

14.
ABSTRACT: A distributed watershed model combining kinematic wave routing, 1‐D dynamic channel‐flow routing, and 2‐D diffusive overland‐flow routing has been developed to simulate flooding and inundation levels of large watersheds. The study watershed was linked to a GIS database and was divided into an upstream mountainous area and a downstream alluvial plain. A kinematic wave routing was adopted at the mountainous area to compute the discharge flowing into the alluvial plain. A 1‐D dynamic channel routing solving the St. Venant equations by the Preissmann method was performed for the main channel of the alluvial plain, whereas a 2‐D overland‐flow routing solving the diffusion wave equation with the Alternating Direction Explicit scheme was used for floodplains. The above two routings were connected by weir‐link discharge formula. The parameters in the model were calibrated and independently verified by single‐event storms. An example application of flooding/inundation analysis was conducted for the Taichung station and the Woozi depot (Taiwan High Speed Rail). Suggested inundation‐proofing measures ‐ including raising ground surface elevation of the station and depot and building a waterproofing exterior wall and their combination ‐ were investigated. It was concluded that building the waterproofing exterior wall had a strong tendency to decrease peak inundation depth.  相似文献   

15.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

16.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

17.
Dosskey, Michael G. and Zeyuan Qiu, 2011. Comparison of Indexes for Prioritizing Placement of Water Quality Buffers in Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):662‐671. DOI: 10.1111/j.1752‐1688.2011.00532.x Abstract: Five physically based, spatially distributed, empirical indexes were compared for the degree to which they identified the same or different locations in watersheds where vegetative buffers would function better for reducing agricultural nonpoint source pollution. All five indexes were calculated on a 10 m × 10 m digital elevation grid on agricultural land in the 144‐km2 Neshanic River watershed in New Jersey. The indexes included the topography‐based Wetness Index (WI) and Topographic Index (TI) and three soil survey‐based indexes (sediment trapping efficiency [STE], water trapping efficiency [WTE], and groundwater interaction [GI]). Results showed that each index associated higher pollution risk and mitigation potential to a different part of the landscape. The WI and TI identified swales and riparian areas where runoff converges, whereas STE and WTE identified upland sites. The STE and WTE lack the fine scale of slope resolution and the accounting for convergent runoff patterns that can be important for properly locating buffers in some watersheds. The GI index indicates the existence of a shallow water table but the correspondence with WI‐ and TI‐identified sites was only modest. For watersheds where pollutant loading is generated by both saturation‐excess (emphasized by TI and WI) and infiltration‐excess processes (emphasized by STE and WTE), the indexes could be complementary. However, techniques would be needed for properly apportioning priority among sites identified by each index.  相似文献   

18.
ABSTRACT: The PnET‐II model uses hydroclimatic data on maximum and minimum temperatures, precipitation, and solar radiation, together with vegetation and soil parameters, to produce estimates of net primary productivity, evapotranspiration (ET), and runoff on a monthly time step for forested areas. In this study, the PnET‐II model was employed to simulate the hydrologic cycle for 17 Southeastern eight‐digit hydrologic unit code (HUC) watersheds dominated by evergreen or deciduous tree species. Based on these control experiments, model biases were quantified and tentative revision schemes were introduced. Revisions included: (1) replacing the original single soil layer with three soil layers in the water balance routine; (2) introducing calibrating factors to rectify the phenomenon of overestimation of ET in spring and early summer months; (3) parameterizing proper values of growing degree days for trees located in different climate zones; and (4) adjusting the parameter of fast‐flow (overland flow) fraction based on antecedent moisture condition and precipitation intensity. The revised PnET‐II model, called PnET‐II3SL in this work, substantially improved runoff simulations for the 17 selected experimental sites, and therefore may offer a more powerful tool to address issues in water resources management.  相似文献   

19.
ABSTRACT: Techniques employed to simulate infiltration and subsurface ground-water flow were examined for a number of available watershed models. The large number of processes that these models simulate prohibits detailed analysis of subsurface flow, due to excessive computer and data requirements. Such models emphasize surface flow and include only that portion of water lost to the subsurface and the portion returned to the stream as baseflow. Problems were examined in adopting conjunctive use models, which allow the coordinated exploitation and management of both surface and ground-water resources. The application of conjunctive use models in water resources management is expected to increase dramatically over the next decade.  相似文献   

20.
The Water Erosion Prediction Project (WEPP) model has been tested for its ability to predict soil erosion, runoff, and sediment delivery over a wide range of conditions and scales for both hillslopes and watersheds. Since its release in 1995, there has been considerable interest in adding a chemical transport element to it. Total phosphorus (TP) loss at the watershed outlet was simulated as the product of TP in the soil, amount of sediment at the watershed outlet, and an enrichment ratio (ER) factor. WEPP can be coupled with a simple algorithm to simulate phosphorus transport bound to sediment at the watershed outlet. The objective of this work was to incorporate and test the ability of WEPP in estimatingTP loss with sediment at the small watershed scale. Two approaches were examined. One approach (P-EER) estimated ER according to an empirical relationship; the other approach used the ER calculated by WEPP (P-WER).The data used for model performance test were obtained from two side-by-side watersheds monitored between 1976 and 1980. The watershed sizes were 5.05 and 6.37 ha, and each was in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Measured and simulated results were compared for the period April to October in each year. There was no statistical difference between the mean measured and simulated TP loss. The Nash-Sutcliffe coefficient was 0.80 and 0.78 for the P-EER and P-WER methods, respectively. It was critical for both methods that WEPP adequately represent the biggest sediment yield events because sediment is the main driver for TP loss so that the model can adequately simulate TP losses bound to sediment. The P-WER method is recommended because it does not require use of empirical parameters to estimate TP loss at the watershed outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号