首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen, Limin, Sujoy B. Roy, and Robert A. Goldstein, 2012. Projected Freshwater Withdrawals Under Efficiency Scenarios for Electricity Generation and Municipal Use in the United States for 2030. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/jawr.12013 Abstract: Water withdrawals in the United States (U.S.) have been relatively uniform over the past two decades on a nationally aggregated basis, although on a more highly resolved geographical basis, increases have occurred, largely associated with growth in population and the cooling needs for new electricity generation. Using recent county‐level water use data, we develop projections for five different scenarios, bracketing a range of future conditions, and representing different levels of efficiency in the municipal and electricity generation sectors, where the municipal sector includes public and self‐supplied domestic withdrawals. Starting with the 2005 estimate of 347 billion gallons per day (bgd) of freshwater withdrawal in the continental U.S., our analysis shows that under a business‐as‐usual scenario of growth, there will be a need for additional water over current levels: 11 bgd in the municipal sector, with a smaller requirement for new electricity generation (1 bgd). However, we also estimate that withdrawals could be reduced significantly over current levels, through increased water use efficiencies in the electric power and municipal sectors. The study shows that if water withdrawals are to be held at their current levels for the thermoelectric and municipal sectors individually at a county level over the next 25 years, large improvements in efficiency will be needed in many parts of the Southeast and Southwest.  相似文献   

2.
Historically, thermoelectric water withdrawal has been estimated by the Energy Information Administration (EIA) and the U.S. Geological Survey's (USGS) water‐use compilations. Recently, the USGS developed models for estimating withdrawal at thermoelectric plants to provide estimates independent from plant operator‐reported withdrawal data. This article compares three federal datasets of thermoelectric withdrawals for the United States in 2010: one based on the USGS water‐use compilation, another based on EIA data, and the third based on USGS model‐estimated data. The withdrawal data varied widely. Many plants had three different withdrawal values, and for approximately 54% of the plants the largest withdrawal value was twice the smallest, or larger. The causes of discrepancies among withdrawal estimates included definitional differences, definitional noise, and various nondefinitional causes. The uncertainty in national totals can be characterized by the range among the three datasets, from 5,640 m3/s (129 billion gallons per day [bgd]) to 6,954 m3/s (158 bgd), or by the aggregate difference between the smallest and largest values at each plant, from 4,014 m3/s (92 bgd) to 8,590 m3/s (196 bgd). When used to assess the accuracy of reported values, the USGS model estimates identify plants that need to be reviewed.  相似文献   

3.
Abstract: Thermoelectric power generation is responsible for the largest annual volume of water withdrawals in the United States although it is only a distant third after irrigation and industrial sectors in consumptive use. The substantial water withdrawals by thermoelectric power plants can have significant impacts on local surface and ground water sources, especially in arid regions. However, there are few studies of the determinants of water use in thermoelectric generation. Analysis of thermoelectric water use data in existing steam thermoelectric power plants shows that there is wide variability in unitary thermoelectric water use (in cubic decimeters per 1 kWh) within and among different types of cooling systems. Multiple‐regression models of unit thermoelectric water use were developed to identify significant determinants of unit thermoelectric water use. The high variability of unit usage rates indicates that there is a significant potential for water conservation in existing thermoelectric power plants.  相似文献   

4.
This article presents an empirically based model, WiCTS ( Wi thdrawal and C onsumption for T hermoelectric S ystems), to estimate regional water withdrawals and consumption implied by any electricity generation portfolio. WiTCS uses water use rates, developed at the substate level, to predict water use by scaling the rates with predicted energy generation. The capability of WiCTS is demonstrated by assessing the impact of renewable electricity generation scenarios on water use in the United States (U.S.) through 2050. The energy generation scenarios are taken from the Renewable Energy Futures Study performed by the U.S. National Renewable Energy Laboratory of the U.S. Department of Energy. Results indicate reductions in water use are achieved under these renewable energy scenarios. The analysis further explores the impact of two modifications to the modeling framework. The first modification presumes geothermal and concentrated solar power generation technologies employ water‐intensive cooling systems vs. cooling technology that requires no water. The second modification presumes all water‐intensive cooling technologies use closed cycle cooling (as opposed to once‐through cooling) technologies by 2050. Results based on one of the renewable generation scenarios indicate water use increases by over 20% under the first modification, and water consumption increases by approximately 40% while water withdrawals decrease by over 85% under the second modification.  相似文献   

5.
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business‐as‐usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.  相似文献   

6.
The availability of freshwater is a prerequisite for municipal development and agricultural production, especially in the arid and semiarid portions of the western United States (U.S.). Agriculture is the leading user of water in the U.S. Agricultural water use can be partitioned into green (derived from rainfall) and blue water (irrigation). Blue water can be further subdivided by source. In this research, we develop a hydrologic balance by 8‐Digit Hydrologic Unit Code using a combination of Soil and Water Assessment Tool simulations and available human water use estimates. These data are used to partition agricultural groundwater usage by sustainability and surface water usage by local source or importation. These predictions coupled with reported agricultural yield data are used to predict the virtual water contained in each ton of corn, wheat, sorghum, and soybeans produced and its source. We estimate that these four crops consume 480 km3 of green water annually and 23 km3 of blue water, 12 km3 of which is from groundwater withdrawal. Regional trends in blue water use from groundwater depletion highlight heavy usage in the High Plains, and small pockets throughout the western U.S. This information is presented to inform water resources debate by estimating the cost of agricultural production in terms of water regionally. This research illustrates the variable water content of the crops we consume and export, and the source of that water.  相似文献   

7.
Conventional indicators of water use for urban areas account primarily for direct water use. In contrast, our objective here is to employ the water footprint (WF) concept and methodology to include the virtual or indirect water use to assess the production‐side and consumption‐side WF of 65 United States (U.S.) cities. The 65 cities include the largest metropolitan areas and some of the major mid‐sized cities in the U.S. We use metropolitan areas to define our city boundaries as this is the native spatial resolution of the main datasets used. To estimate the urban WFs, we integrated large and disparate datasets, including commodity flow (agricultural, livestock, and industrial commodities), water use, and socioeconomic data. By analyzing the estimated WF values, we found indirect water use accounts on average for 66% of the WF of consumption. We found some cities are net virtual water exporters (11 of 65) because they rely heavily on direct water uses or are heavy producers of industrial commodities. Also, WF patterns vary widely across the U.S. but regional patterns seem to emerge. For example, the dense cities of the U.S. northeast megaregion have a significantly low per capita WF relative to the other cities, while cities in the Gulf Coast megaregion have a significantly higher industrial WF of production and consumption. Furthermore, there is inequality in the WF of consumption where a few cities account for a disproportionate share of the total U.S. urban water uses.  相似文献   

8.
Abstract: The residents of Nassau County Long Island, New York receive all of their potable drinking water from the Upper Glacial, Jameco/Magothy (Magothy), North Shore, and Lloyd aquifers. As the population of Nassau County grew from 1930 to 1970, the demand on the ground‐water resources also grew. However, no one was looking at the potential impact of withdrawing up to 180 mgd (7.9 m3/s) by over 50 independent water purveyors. Some coastal community wells on the north and south shores of Nassau County were being impacted by saltwater intrusion. The New York State Legislature formed a commission to look into the water resources in 1972. The commission projected extensive population growth and a corresponding increase in pumping resulting in a projected 93.5 to 123 mgd (4.1 to 5.5 m3/s) deficit by 2000. In 1986, the New York Legislature passed legislation to strengthen the well permit program and also establish a moratorium on new withdrawals from the Lloyd aquifer to protect the coastal community’s only remaining supply of drinking water. Over 30 years has passed since the New York Legislature made these population and pumping projections and it is time to take a look at the accuracy of the projections that led to the moratorium. United States Census data shows that the population of Nassau County did not increase but decreased from 1970 to 2000. Records show that pumping in Nassau County was relatively stable fluctuating between 170 and 200 mgd (7.5 to 8.8 m3/s) from 1970 to 2004, well below the projection of 242 to 321 mgd (10.6 to 14.1 m3/s). Therefore, the population and water demand never grew to projected values and the projected threat to the coastal communities has diminished. With a stable population and water demand, its time to take a fresh look at proactive ground‐water resource management in Nassau County. One example of proactive ground‐water management that is being considered in New Jersey where conditions are similar uses a ground‐water flow model to balance ground water withdrawals, an interconnection model to match supply with demand using available interconnections, and a hydraulic model to balance flow in water mains. New Jersey also conducted an interconnection study to look into how systems with excess capacity could be used to balance withdrawals in stressed aquifer areas with withdrawals in unstressed areas. Using these proactive ground‐water management tools, ground‐water extraction could be balanced across Nassau County to mitigate potential impacts from saltwater intrusion and provide most water purveyors with a redundant supply that could be used during water emergencies.  相似文献   

9.
Water‐use efficiency in the United States (U.S.) has improved in recent years. Yet continued population growth coupled with increasingly conservation‐oriented regulatory frameworks suggest that residential water suppliers will have to realize additional efficiency gains in coming decades. Outdoor water‐use restrictions (OWRs) appear to be an increasingly prevalent demand‐side management policy tool. To date little research has investigated the policy mechanisms that govern OWR adoption and influence the prevalence of OWRs. This article fills this gap with an assessment of state‐level policies influencing local‐level restrictions on residential outdoor water use in each of the 48 contiguous U.S. states, and with a detailed illustration of the cross‐scalar dynamic of one state's policy framework in practice. An examination of the implementation of OWRs in 24 neighboring towns in Massachusetts across the 2003‐2012 period indicates the interplay between state‐level and local‐level policies leads to OWRs implementation over extended time‐periods, even when drought conditions are not present. This finding suggests OWRs are being used as a tool for general‐purpose water conservation rather than as a stopgap measure justified by temporary water shortage conditions. Future research should investigate how local‐level water savings vary with differing state‐level approaches.  相似文献   

10.
Water use for oil and gas development (i.e., hydraulic fracturing) is a concern in semiarid basins where water supply is often stressed to meet demands, and oil and gas production can exacerbate the situation. Understanding the impacts of water use for hydraulic fracturing (HF) on water availability in semiarid regions is critical for management and regulatory decisions. In the current work, we quantify water use for HF at several scales — from municipal to state‐wide — using the IHS Enerdeq database for the South Platte Basin. In addition, we estimate produced water (a by‐product of oil and gas production), using data from the Colorado Oil and Gas Conservation Commission to explore reuse scenarios. The South Platte River Basin, located in northeastern Colorado, encompasses the Denver‐Metro area. The basin has one of the most productive oil and gas shale formations in Colorado, with much of the production occurring in Weld County. The basin has experienced higher horizontal drilling rates coupled with an increasing population. Results show water use for horizontal and vertical wells averages 11,000 and 1,000 m3, respectively. Water use for HF in the South Platte Basin totaled 0.63% of the basin's 2014 total water demand. For Weld County, water use for HF was 2.4% of total demand, and for the city of Greeley, water use was 7% of total demand. Produced water totaled 9.4 Mm3 in the basin for 2014, which represents 42% of the total water used for HF.  相似文献   

11.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

12.
Elcock, Deborah, 2010. Future U.S. Water Consumption: The Role of Energy Production. Journal of the American Water Resources Association (JAWRA) 46(3):447-460. DOI: 10.1111/j.1752-1688.2009.00413.x Abstract: This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.  相似文献   

13.
ABSTRACT: The paper outlines both the methods used and the results obtained in a study of the demand for municipal and industrial water for the Seattle region. The study was made as part of a regional water management study program, one objective of which is to “… identify, quantify, and set priorities for all current and future water uses …”. A basic concept in the study of municipal and industrial water use is that the demand for water is derived from the demand for output and the direct services that water provides. Principal characteristics of the study are: (1) Water use is studied by type - residential, commercial, industrial and public -with identification of factors affecting each; (2) Water demands are studied by season as well as on an annual basis; (3) Projections of future water use are tied directly to projections of economic change in the service area; and (4) The effects of alternative policies on water use are estimated. Water use levels are projected under alternative regional growth assumptions provided by the Puget Sound Governmental Conference, a regional planning agency. Thus, the water use planning is consistent with other regional planning programs in this respect. The results can be varied according to changes in specific factors affecting water use. The factors considered in the present study include: single-family residential lot size, distribution of population between single- and multi-family units, per capita water use by multi-family unit residents, and industrial and commercial water use per employee. An income elasticity of demand was estimated for single-family residential water use.  相似文献   

14.
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape.  相似文献   

15.
ABSTRACT: Selective placement - under a rigorous statistical sampling design - of newly available monitoring equipment on irrigation systems may provide effective and economical estimates of total irrigation water use in areas where complete water use inventories are impractical. In 1979, a joint effort by the U.S. Geological Survey and Florida's Suwannee River Water Management District was launched to estimate the District's 1979 irrigation water use using a selective monitoring approach. Analysis of previous inventories of irrigation equipment and amounts of water applied in the District indicated that total 1979 water use estimates with six to nine percent sampling error could be obtained using selective monitoring, given the time and equipment limitations for the monitoring program. Restricting monitoring to a sample of farms can introduce systematic error to water use estimates if farmers' participation is related to their water use methods. Preliminary results of the 1979 study indicate tht declining participation rates, if unchecked, could lead to serious systematic eror in future North Florida selective monitoring studies.  相似文献   

16.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

17.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   

18.
Regulating groundwater in the Eastern United States (U.S.), particularly transboundary aquifers between states, is a challenge given the patchwork quilt of common law, statutory frameworks, and agency rules. Such regulation is made more challenging by the need for better quantification of pumping and use. These dynamics are exemplified through several case studies, including the first ever U.S. Supreme Court case related to groundwater withdrawals (set in the Eastern U.S.). As dynamics such as expanded irrigation, population increases, and ecological considerations influence groundwater use across the Eastern U.S., water use will continue to be an important driver for economic activity and interaction within and between states. To effectively regulate transboundary aquifers, governance solutions must incorporate current science into decision making and be implemented at local, state, regional, and federal scales.  相似文献   

19.
Water shortage is a common problem around the world, especially in developing countries. Water shortage is closely linked to natural and social conditions, but the linkages between these natural and social conditions and their underlying temporal and spatial variation are less well explored. This paper details an application of the Driving‐Force‐Pressure‐State‐Impact‐Response (DPSIR) model, a holistic and sustainable tool for resources planning and management, and uses comprehensive weights to evaluate the water poverty (wp) in China from 1997 to 2014. This study applies the Kernel density estimation model to analyze the temporal variation trend and uses the least square error model to analyze the spatial pattern of wp. The results show the level of wp is gradually declining over time and the improvements in the coastal and inland wp situation are not spatially harmonious, and there are four primary types of wp in China based on drivers and causal mechanisms: D‐P‐I, D‐P‐I‐R, D‐P‐S‐I, and D‐P‐S‐I‐R. Furthermore, we analyze the main causes of spatial difference of wp and put forward corresponding countermeasures. The research findings are intended to provide a new insight for the evaluation of wp in the context of sustainable development, breaking past limitations that arise in simplified analyses using a single method, and to provide a strategy for regional water resources management to relieve wp.  相似文献   

20.
Alessa, Lilian, Mark Altaweel, Andrew Kliskey, Christopher Bone, William Schnabel, and Kalb Stevenson, 2011. Alaska’s Freshwater Resources: Issues Affecting Local and International Interests. Journal of the American Water Resources Association (JAWRA) 47(1):143‐157. DOI: 10.1111/j.1752‐1688.2010.00498.x Abstract: The State of Alaska faces a broad range of freshwater challenges including limited resource access in rural communities, increasing freshwater use, and a pressing need to better understand and prepare for climate‐driven change. Despite these significant issues, Alaska is relatively water‐rich and far more equipped to address its water resource concerns compared with other regions of the world. Globally, simultaneous and rapid water stresses have influenced and complicated conflicts and are motivating nations to develop markets and trade as one of the primary means to manage their needs for this resource. This paper presents these interacting issues in the context of Alaska’s relationship with a world undergoing significant social and ecological changes that affect freshwater supplies. We present the challenges faced by Alaska in the context of a larger global perspective, and briefly explore the relative effects these issues have on local, regional, and global scales. We present the argument that Alaska needs to develop more robust institutions and policies that can alleviate both household concerns and ensure that Alaska plays a significant role in the international freshwater arena for its long‐term resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号