首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Biotic Ligand Model was developed predicting the effect of cobalt on root growth of barley (Hordeum vulgare) in nutrient solutions. The extent to which Ca(2+), Mg(2+), Na(+), K(+) ions and pH independently affect cobalt toxicity to barley was studied. With increasing activities of Mg(2+), and to a lesser extent also K(+), the 4-d EC50(Co2+) increased linearly, while Ca(2+), Na(+) and H(+) activities did not affect Co(2+) toxicity. Stability constants for the binding of Co(2+), Mg(2+) and K(+) to the biotic ligand were obtained: logK(CoBL)=5.14, logK(MgBL)=3.86 and logK(KBL)=2.50. Limited validation of the model with one standard artificial soil and one standard field soil showed that the 4-d EC50(Co2+) could only be predicted within a factor of four from the observed values, indicating further refinement of the BLM is needed.  相似文献   

2.
A biotic ligand model (BLM) was developed to predict nickel toxicity, affecting root growth of barley (Hordeum vulgare), in nutrient solutions. The extent to which Ca(2+), Mg(2+), Na(+), K(+) ions and pH each influenced nickel toxicity was determined. Higher activities of Mg(2+) linearly increased the 4d EC50 Ni (2+) , while Ca(2+), Na(+), K(+) and H(+) activities did not significantly influence Ni(2+) toxicity. Stability constants for the binding of Ni(2+) and Mg(2+) to the biotic ligand were obtained: logK(NiBL)=5.27 and logK(MgBL)=3.47. Further, it was calculated that on average 57% of the biotic ligand sites needed to be occupied by nickel to induce 50% root growth inhibition. Auto-validation of the BLM indicated that predicted EC50s differed from the observed EC50s by a factor of less than 2, indicating that the BLM concept may also be used to predict metal toxicity to terrestrial plants.  相似文献   

3.
Luo XS  Li LZ  Zhou DM 《Chemosphere》2008,73(3):401-406
The extent to which calcium, magnesium, sodium, potassium and hydrogen ions independently mitigate Cu rhizotoxicity to wheat (Triticumaestivum) in nutrient solutions was examined. Increasing activities of Ca(2+) and Mg(2+) but not Na(+), K(+) and H(+) linearly increased the 2 d EC50 (as Cu(2+) activity), supporting the concept that some cations can compete with Cu(2+) for binding the active sites at the terrestrial organism-solution interface (i.e., the biotic ligand, BL). According to the biotic ligand model (BLM) concept, the conditional stability constants for the binding of Cu(2+), Ca(2+) and Mg(2+) to the BL were derived from the toxicity data. They were 6.28, 2.43 and 3.34 for logK(CuBL), logK(CaBL) and logK(MgBL), respectively. It was calculated that on average 43.6% of BL sites need to be occupied by Cu(2+) to induce 50% root growth inhibition. Using the estimated parameters, a BLM was successfully developed to predict Cu toxicity for wheat as a function of solution characteristics.  相似文献   

4.
Chen S  Liu Y 《Chemosphere》2007,67(5):1010-1017
In this paper, the photocatalytic degradation of glyphosate selected as the deputy of organic pollutant in aqueous solution with TiO(2) powder as a photocatalyst has been studied. The effects of various parameters, such as the amount of the photocatalyst, illumination time, initial pH value, electron acceptors, metal ions, and anions on the photocatalytic degradation of glyphosate were investigated. From the studies, the best condition for the effect of the parameters on the photocatalytic degradation of glyphosate was obtained. The results show that the optimum amount of the photocatalyst used is 6.0 g l(-1) for the photocatalytic reactions. The photodegradation efficiency of glyphosate increases with the increase of the illumination time. With the addition of Fe(3+), Cu(2+), H(2)O(2), K(2)S(2)O(8) or KBrO(3), the photocatalytic degradation of glyphosate is accelerated. However, with the addition of Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Co(2+) and Ni(2+), or with the addition of trace amounts of Cl(-), Br(-), SO(4)(2-), there are no obvious effects on the reactions. Acidic or alkaline mediums are favorable for the photocatalytic degradation of glyphosate. The possible roles of the additives on the reactions and the possible mechanisms of effect were discussed.  相似文献   

5.
A chelating resin containing a stable thiol group was synthesised, using polystyrene as the starting material. The resin is stable towards conc. HCl, 0.1M HNO(3) and 0.1M NaOH. The resin shows affinity towards Ag(+), Hg(2+), Bi(3+), Pb(2+), Cu(2+), Zn(2+) and Cd(2+). Extraction of these metal ions as a function of pH, kinetics of exchange and breakthrough capacities is evaluated. The selectivity of the resin for the metal ions is in the order Ag(+) > Hg2+ > Cu2+ > Pb2+ > Cd2+ > Zn2+. The equilibrium constants for exchange and kinetics of exchange are favourable for the recovery of mercury from lean sources. Application of the resin in the stripping of mercury from chlor-alkali plant affluent, and in the enrichment of mercury from seawater, have been investigated. Mercury sorbed resin can be regenerated using 5% thiourea in 0.1M HCl.  相似文献   

6.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

7.
Wet deposition and related rainwater chemistry were studied at the Itatiaia massif, on which is settled the Itatiaia National Park (INP). Samples were simultaneously collected on a weekly basis over 12 months, using automated wet and dry samplers, at the INP-Headquarters (INP-Hq; altitude=820 m) and the Itatiaia Plateau (It-Pt; altitude=2460 m). Conductivity, pH, Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-) and SO(4)(2-) were determined in 36 rainwater samples. Volume-weighted mean (VWM) pH was lower at the INP-Hq (4.9) than at the It-Pt (5.3). Very strong correlation between Cl(-) and Na(+) was found for the INP-Hq (r=0.99). At the Itatiaia massif, SO(4)(2-), NO(3)(-), and NH(4)(+) comprised together about 60% of the total inorganic ions and appear to exert the major control on rainwater pH.  相似文献   

8.
Chemical characterization of rainwater at Singapore   总被引:15,自引:0,他引:15  
A short term study of the chemical composition of rainwater was carried out from November 1999 to October 2000 in Singapore. The rainwater was typically acidic with a mean pH of 4.2. Sulfate was the most abundant ion and comparable to the results reported for other industrialized regions. The concentrations of major ions (NH(4)(+), Ca(2+), K(+), Na(+), Mg(2+), SO(4)(2+), NO(3)(2-), Cl(-), HCOO(-), CH(3)COO(-)) varied monthly. Results show that local meteorological conditions influence the chemical compositions to a significant extent. The pollutants in rainwater were derived from long range and local (industry and traffic) sources.  相似文献   

9.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

10.
11.
The effect of ions, including Na(+), Mg(2+), Ca(2+), Cl(-), SO(4)(2-) and CO(3)(2-), at various initial concentrations, on the kinetics of cadmium sorption by chitin was studied at 25 degrees C and free initial pH solution in batch conditions. The presence of these ions in solution was found to inhibit the uptake of cadmium by chitin to different degrees: sodium and chloride ions have no significant effect. For Mg(2+), Ca(2+), SO(4)(2-) and CO(3)(2-) ions, the effects ranged from a large inhibition of cadmium by Ca(2+) and CO(3)(2-) to a weak inhibition by Mg(2+) and SO(4)(2-). These results indicate that the uptake sites of these ions are the same. No ion was found to enhance cadmium uptake. The results also showed that the kinetics of sorption are best described by a pseudo second-order expression than a first or second-order model.  相似文献   

12.
Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N(2) adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m(2)/g to 25.7 m(2)/g for the surface area and from 0.0086 cm(3)/g to 0.091 cm(3)/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca(2+), K(+), Na(+), Cl(-) and SO(4)(-2)) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca(2+) and SO(4)(-2), the coupled effect of diffusion resistance and the degree of under-saturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.  相似文献   

13.
Furukawa K  Takahashi Y 《Chemosphere》2008,73(8):1272-1278
Most studies on diffusion of metal ions in various water-rock systems have dealt with free ions (hydrated ions). However, it is often the case that metal ions are dissolved as complexed species such as with humic substances (HS) in natural waters. Hence, we need to study the diffusion behavior of these complexes in order to understand fully the diffusion phenomenon in natural. In this study, the diffusion coefficients of free metal ions (M(z+)) and their complexes with HS (M-HS) were compared to understand the effect of complexation with HS on the diffusion of metal ions such as Co(2+), Cd(2+), and rare earth elements (REE(3+)). Although the diffusion coefficients of free metal ions depend on ionic potential, such dependence was not observed in the presence of HS. Comparing the diffusion coefficients of metal complexes with ethylenediaminetetraacetate (EDTA), fulvic acid, and humic acid showed that the molecular weight (MW), or the size of the ligand, is of primary importance for the diffusion of M-HS. As a consequence, the diffusion coefficients of all REE(3+) were similar in the presence of HS, while they were different in the absence of HS due to the different size of each REE(3+). The similarity among the diffusion coefficients of REE-HS was caused by the much larger size of HS compared with each ion. However, the distribution coefficients of M-HS were not similar among REE(3+), Cd(2+), and Co(2+). REE(3+) and Cd(2+) which have higher affinities for larger MW fraction in HS diffused slower than Co(2+) which favors smaller MW fraction. The results show that the affinity for different MW fractions among HS controls the diffusion of M-HS, which must be important to predict precisely the diffusion behavior of metal ions bound to HS in natural systems.  相似文献   

14.
Usefulness of a method of artificial foliage was tested for estimation of total ionic inputs from the atmosphere to forest ecosystems, as well as of processes relevant to ionic fluxes through tree canopies: uptake, leaching, passive flow. The studies were performed in Norway spruce and European beech stands in Karkonosze Mountains (Poland), in 1995-97. Artificial leaves of increasing leaf area index: 0, 2, 6 and 12 m(2) m(-2 )were placed above standard rain collectors. It has been found that total atmospheric fluxes of H(+), NH(4)(+), Ca(2+), Mg(2+), Pb(2+), NO(3)(-) and SO(4)(2-) rose as surface area of the foliage increased. This was especially true for nitrate, sulphate and ammonium. No such relationship was found for K(+), Na(+), Zn(2+), Cd(2+), Cu(2+) and PO(4)(3-). The increase in anion fluxes exceeded that in neutralising cations (NH(4)(+), Na(+), K(+), Mg(2+), Ca(2+)) and led to progressive rainwater acidification with the increase in the foliage area. An analysis of net canopy exchange (atmospheric input-throughfall flux) has shown that SO(4)(2-), PO(4)(3-), Na(+), Ca(2+) and Cu(2+) flowed passively through the tree crowns; NH(4)(+), NO(3)(-), Zn(2+), Cd(2+) and occasionally Pb(2+) were efficiently absorbed, whereas K(+) was leached from the canopies. Beech was more effective in modifying ionic pool from the atmosphere than spruce. This related to H(+) (greater absorption) and Mg(2+) (greater leaching). It has been demonstrated that the results concerning trends in net canopy exchange and produced by the simple method of artificial foliage are comparable to more sophisticated techniques of the measurements. This proves the method to be useful.  相似文献   

15.
Potentiometric titrations and lead sorption tests were conducted using muscovite, clinochlore, hematite, goethite, quartz, and a mixture of these same minerals. Mechanistic models were developed to represent and interpret these data. The aim was isolating the specific contribution of each mineral in proton and lead binding. Acid-base properties of each single mineral as well as their mixture were represented by discrete models, which consider the dissociation of n monoprotic sites (n-site/n-K(H) models). A one-site/one-K(H) model (logK(H1) = 10.69) was chosen for quartz (dissociation of SiOH edge hydroxyl groups). Goethite and hematite (FeOH groups) were represented by the same one-site/one-K(H) model (logK(H1) = 10.35). Three-site/three-K(H) models were used for muscovite (logK(H1) = 4.18; logK(H2) = 6.65; logK(H3) = 9.67) and clinochlore (logK(H1) = 3.84; logK(H2) = 6.57; logK(H3) = 9.71) assuming that SiOH and AlOH of the aluminosilicate matrix dissociate in the acid-neutral pH range while SiOH groups of quartz inclusions dissociate in the basic range. Similarly, the mixture of these minerals was represented by a three-site/three-K(H) model (logK(H1) = 3.39; logK(H2) = 6.72; logK(H3) = 10.82). According to crossed comparisons with single minerals, the first two sites of the mixture were associated with the aluminosilicate matrix (SiOH and AlOH respectively) and the third site with iron oxides (FeOH) and quartz groups. Additivity of proton binding in the mixture was demonstrated by simulating the mixture's titration curve. A unified model for the entire set of titration curves (single minerals and mixture) was also developed introducing a three-peak distribution function for proton affinity constants. Experimental data for lead sorption onto the mixture and individual minerals in 3-5 pH range denoted the competition between protons and metallic ions. The entire set of lead isotherms (individual mineral and mixture data) was represented adequately by a unified model taking into account both monodentate and bidentate complexes with the three active sites (additivity of lead binding). Experimental data of metal distribution in solid and liquid phases were successfully simulated by implementing the protonation and the surface complexation constants into the database of a dedicated software for chemical equilibria.  相似文献   

16.
Ashek A  Lee C  Park H  Cho SJ 《Chemosphere》2006,65(3):521-529
In the present study we have performed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) on structurally diverse ligands of Ah (dioxin) receptor to explore the physico-chemical requirements for binding. All CoMFA and CoMSIA models have given q(2) value of more than 0.5 and r(2) value of more than 0.84. The predictive ability of the models was validated by an external test set, which gave satisfactory predictive r(2) values. Best predictions were obtained with CoMFA model of combined modified training set (q(2) = 0.631, r(2) = 0.900), giving predictive residual value = 0.02 log unit for the test compound. Addition of CoMSIA study has elucidated the role of hydrophobicity and hydrogen bonding along with the effect of steric and electrostatic properties revealed by CoMFA. We have suggested a model comprises of four structurally different compounds, which offers a good predictability for various ligands. Our QSAR model is consistent with all previously established QSAR models with less structurally diverse ligands.  相似文献   

17.
Atmospheric deposition to the edge of a spruce forest in Denmark   总被引:6,自引:0,他引:6  
Atmospheric deposition was measured during 1 year at the forest edge of a Norway spruce stand in Denmark. Inside the forest the deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(2) and SO(4)(2-) with canopy throughfall varies with the distance from the forest edge. The deposition at the edge is found to be 10-20 times as high as deposition to an open field and 2-8 times as high as deposition inside the stand. An exponential decrease in deposition as a function of the distance from the forest edge is found. Increased deposition of K(+) and non-sea salt Mg(2+), which mainly originates as a result of leaching from the needles may be explained by a larger leaf area index (LAI) at the forest edge. Deposition of particulate substances, especially Na(+), Cl(-), Mg(2+) and to some extent SO(4)(2-), NH(4)(+) and NO(3)(-) is increased much more than the LAI, which we believe to be caused by changes in wind movements at the forest edge.  相似文献   

18.
Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al(3+), Ni(2+), etc.) were estimated by applying a chemical speciation model. Both total and HNO(3)-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO(3)-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu(2+), Zn(2+), Cd(2+), Pb(2+)) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al(3+) were near to toxic levels at two locations.  相似文献   

19.
Fourteen Azotobacter chroococcum strains isolated from soils of Southern Poland were studied concerning resistance to various xenobiotics: heavy metal ions: Cd(2+,) Cu(2+), Fe(3+), Mn(2+), Pb(2+), Zn(2+), pesticides: herbicides linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and combination of mecoprop ((RS)-2-(4-chloro-2-methylphenoxy)propanoic acid), dicamba (3,6-dichloro-2-methoxybenzoic acid) and MCPA (2-methyl-4-chlorophenoxyacetic acid), fungicide copper oxychloride, insecticide fenitrothion (O,O-Dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate) and eight antibiotics commonly used against Gram-negative bacteria. The tested soils were divided into seven groups of land use: forest, field crop, park, urban lawn, industrial area, garden and fallow land, and were analyzed for the following heavy metal ion concentrations using the atomic absorption spectrometry (AAS) technique: Cd(2+,) Cu(2+), Fe(3+), Mn(2+), Pb(2+), Zn(2+). All strains were resistant to Pb(2+), whereas other metals caused the growth inhibition of the analyzed strains. There was no significant relationship between metal concentrations in the analyzed soils and metal resistance of the isolates. Herbicide linuron did not inhibit the growth of A. chroococcum in any of the concentrations. All other pesticides caused the growth inhibition only in the concentrate forms. All isolates were sensitive to β-lactam antibiotic Meropenem, however high intraspecies differentiation was observed concerning resistance to other antibiotics. The obtained results require further study regarding resistance mechanisms and possible use of the xenobiotic-resistant strains in land rehabilitation.  相似文献   

20.
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号