共查询到10条相似文献,搜索用时 19 毫秒
1.
2.
3.
为了老城区河道的合理整治,采用总有机碳(TOC)分析仪对常州市老城区3条河流及区域内浅层地下水的14个采样点水样进行3个月的总有机碳含量检测。老城区水环境受到不同程度的有机污染,某些地下水的TOC含量高于地表水,原因为地表水补给地下水,且老城区水体污染源主要来源于周边地区的生活污水,并受到关河、雨水等的影响,这为常州市老城区水污染治理提供了依据。 相似文献
4.
利用2020年12月1日至2021年2月28日合肥市细颗粒物(PM2.5)、有机碳(OC)和元素碳(EC)等环境空气质量监测数据和气象观测数据,分析了合肥市大气PM2.5中OC和EC的污染特征,并探讨了其来源以及气象因素影响。结果表明:合肥市冬季碳质气溶胶是PM2.5中主要组分,随着污染程度的加重,碳质气溶胶的质量浓度逐步增加,但其在PM2.5中的占比先减小后增加。在以PM2.5为首要污染物的不同污染级别天气条件下,OC和EC的相关性说明不同程度下碳质气溶胶来源复杂。OC/EC表明机动车尾气和燃煤源排放是碳质气溶胶的主要来源。二次有机碳(SOC)会随着污染程度的加重而呈现升高趋势。OC和EC在冬季受温度影响较小;较大的相对湿度对OC和EC具有一定的清除作用,明显降水或连续降水的清除作用更加显著;而风速对含碳气溶胶的影响主要出现在污染天气背景下。 相似文献
5.
为了探讨宁波市大气颗粒物中浓度水平与季节变化,2010年1、5、8、11月分季节采集了宁波市大气中PM10样品,在宁波连续观测了PM10以及有机碳(OC)、元素碳(EC)的浓度变化,并探讨宁波全年各季碳气溶胶污染变化特征;PM10中OC和EC相关性较好,说明OC与EC的来源相同,各采样点PM10中OC/EC的各季均值大部分超过2.0,表明宁波空气中存在一定的二次污染。宁波秋季SOC占OC含量高于其他季节。从PM10中8个碳组分丰度初步判断宁波市颗粒物中碳的主要来源是汽车尾气、道路扬尘及燃煤。 相似文献
6.
采用HPLC-MS/MS法监测长江南京段横断面水、水源水、出厂水中12种有机磷酸酯类化合物(OPEs)残留,考察其分布特征及自来水厂对其处理效果。结果表明:12种OPEs在采集的横断面水和水源水水样中8种被检出,自来水出厂水水样中除TEHP外其余11种OPEs均为检出,OPEs暴露于水源水与地表水程度相似;除TCPP、TDCP、TCEP浓度出现降低外,其余OPEs浓度水平均未出现明显的处理效果;生态风险评估显示长江南京段横断面水、水源水、出厂水主要检出物质OPEs的风险熵值均低于1,表明不具有环境生态高风险。 相似文献
7.
重庆市春季大气PM10中有机碳、元素碳浓度水平及污染特征分析 总被引:5,自引:1,他引:5
2006年4月于重庆市主城区9个采样点和1个城郊对照点同步采集了大气PM10样品,利用热分解示差热导法元素分析仪测定了PM10中的有机碳(OC)、元素碳(EC)的质量浓度,对OC和EC的污染水平、空间分布、OC和EC的浓度关系以及二次有机碳(SOC)等特征进行了较为详细的分析。结果显示,不同区域采样点的OC、EC浓度存在较明显差异,主城区大气环境中OC、EC平均浓度分别为52.5、8.6μg/m3,是对照点OC(16.8μg/m3)、EC(2.9μg/m3)浓度的3.1和3.0倍;主城区总碳气溶胶(TCA)占PM10总浓度的比例均值为33.3%;无论是高污染城区点还是一般城区点,OC和EC浓度间的相关性均不显著;各样点OC/EC值均超过2,表明存在二次有机碳的贡献;初步估算主城区PM10中的二次有机碳浓度均值为39.6μg/m3,占PM10总浓度的16.1%左右。 相似文献
8.
本文结合TOC总有机碳分析仪和SSM固体样品燃烧装置各自的特点,探索了测定环境水样中包含全部颗粒态有机碳的测定方法.此方法能够全面反映环境水样中总有机碳的含量 相似文献
9.
为了解南京城区大气细颗粒物中有机碳与元素碳的污染特征,在国控点草场门进行了连续一年的PM2.5采样,分析了有机碳(OC)、元素碳(EC)、ρ(OC)/ρ(EC)污染特征和变化规律。结果表明,采样期间有些PM2.5的日均值超过了《环境空气质量标准》(GB 3095-2012)二级标准,ρ(OC)/ρ(EC)为0.77~4.98,平均值为1.92。PM2.5样品中OC约占18%、EC约占9%。 相似文献