首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a triple-continuum conceptual model for simulating flow and transport processes in fractured rock. Field data collected from the unsaturated zone of Yucca Mountain, a repository site of high-level nuclear waste, show a large number of small-scale fractures. The effect of these small fractures has not been considered in previous modeling investigations within the context of a continuum approach. A new triple-continuum model (consisting of matrix, small-fracture, and large-fracture continua) has been developed to investigate the effect of these small fractures. This paper derives the model formulation and discusses the basic triple-continuum behavior of flow and transport processes under different conditions, using both analytical solutions and numerical approaches. The simulation results from the site-scale model of the unsaturated zone of Yucca Mountain indicate that these small fractures may have an important effect on radionuclide transport within the mountain.  相似文献   

2.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this “fast flow” in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891–989] and suggest that fast flow in fractures with minimal fracture–matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

3.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.  相似文献   

4.
The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.  相似文献   

5.
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model.  相似文献   

6.
The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.  相似文献   

7.
This paper presents the results of a field investigation in the unsaturated, fractured welded tuff within the Exploratory Studies Facility (ESF) at Yucca Mountain, NV. This investigation included a series of tests during which tracer-laced water was released into a high-permeability zone within a horizontal injection borehole. The tracer concentration was monitored in the seepage collected in an excavated slot about 1.6 m below the borehole. Results showed significant variability in the hydrologic response of fractures and the matrix. Analyses of the breakthrough curves suggest that flow and transport pathways are dynamic, rather than fixed, and related to liquid-release rates. Under high release rates, fractures acted as the predominant flow pathways, with limited fracture-matrix interaction. Under low release rates, fracture flow was comparatively less dominant, with a noticeable contribution from matrix flow. Observations of tracer concentrations rebounding in seepage water, following an interruption of flow, provided evidence of mass exchange between the fast-flowing fractures and slow- or non-flowing regions. The tests also showed the applicability of fluorinated benzoate tracers in situations where multiple tracers of similar physical properties are warranted.  相似文献   

8.
Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride ratio (Br/Cl) data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/Cl signals, although these data may only indicate a minimum penetration depth, and water may have migrated farther through the fracture network.  相似文献   

9.
A proposed tracer diffusion test for the Exploratory Shaft Facility at Yucca Mountain, NV, is modeled. For the proposed test, a solution containing conservative tracers will be introduced into a borehole in the geologic medium of interest. The tracers will diffuse and advect from the saturated source region into the unsaturated matrix in the surrounding tuff. After some time, the borehole is to be overcored, and tracer concentrations in the fluid will be measured in the core as a function of distance from emplacement. The data will be used to evaluate diffusive behavior and to derive effective diffusion coefficients for the tracers in the specific tuff. Numerical simulations are used to study the effects of effective diffusion coefficient, porosity, saturation, and fracturing on tracer transport. Results are reported for numerical simulations of tests in the Topopah Spring Member and the Tuff of Calico Hills, which have significantly different porosities and saturations. The simulations make the following predictions: The spread of tracer during the test will be sensitive to the effective diffusion coefficient of the tracer. Tracer will diffuse farther in the Topopah Spring Member than in the Tuff of Calico Hills because of the former's lower porosity and saturation. Tracer transport by advection into the Topopah Spring Member will be greater than that into the Tuff of Calico Hills because of capillary effects. While advection will be a significant mechanism for tracer penetration into the Topopah Spring tuff, it will be less significant for tracer penetration into the Calico Hills tuff. The proximity of a single vertical fracture to the source region determines its effects on tracer transport, especially if the fracture diverts fluid flowing from the source region into the matrix.  相似文献   

10.
An analysis of tritium and 36Cl data collected at Yucca Mountain, Nevada suggests that fracture flow may occur at high velocities through the thick unsaturated zone. The mechanisms and extent of this "fast flow" in fractures at Yucca Mountain are investigated with data analysis, mixing models and several one-dimensional modeling scenarios. The model results and data analysis provide evidence substantiating the weeps model [Gauthier, J.H., Wilson, M.L., Lauffer, F.C., 1992. Proceedings of the Third Annual International High-level Radioactive Waste Management Conference, vol. 1, Las Vegas, NV. American Nuclear Society, La Grange Park, IL, pp. 891-989] and suggest that fast flow in fractures with minimal fracture-matrix interaction may comprise a substantial proportion of the total infiltration through Yucca Mountain. Mixing calculations suggest that bomb-pulse tritium measurements, in general, represent the tail end of travel times for thermonuclear-test-era (bomb-pulse) infiltration. The data analysis shows that bomb-pulse tritium and 36Cl measurements are correlated with discrete features such as horizontal fractures and areas where lateral flow may occur. The results presented here imply that fast flow in fractures may be ubiquitous at Yucca Mountain, occurring when transient infiltration (storms) generates flow in the connected fracture network.  相似文献   

11.
This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a potential repository site for storing high-level radioactive waste. The study has been conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the proposed repository's system performance using different conceptual models. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed.  相似文献   

12.
Processes that control the redox conditions in deep groundwaters have been studied. The understanding of such processes in a long-term perspective is important for the safety assessment of a deep geological repository for high-level nuclear waste. An oxidising environment at the depth of the repository would increase the solubility and mobility of many radionuclides, and increase the potential risk for radioactive contamination at the ground surface. Proposed repository concepts also include engineered barriers such as copper canisters, the corrosion of which increases considerably in an oxidising environment compared to prevailing reducing conditions. Swedish granitic rocks are typically relatively sparsely fractured and are best treated as a dual-porosity medium with fast flowing channels through fractures in the rock with a surrounding porous matrix, the pores of which are accessible from the fracture by diffusive transport. Highly simplified problems have been explored with the aim to gain understanding of the underlying transport processes, thermodynamics and chemical reaction kinetics. The degree of complexity is increased successively, and mechanisms and processes identified as of key importance are included in a model framework. For highly complex models, analytical expressions are not fully capable of describing the processes involved, and in such cases the solutions are obtained by numerical calculations. Deep in the rock the main source for reducing capacity is identified as reducing minerals. Such minerals are found inside the porous rock matrix and as infill particles or coatings in fractures in the rock. The model formulation also allows for different flow modes such as flow along discrete fractures in sparsely fractured rocks and along flowpaths in a fracture network. The scavenging of oxygen is exemplified for these cases as well as for more comprehensive applications, including glaciation considerations. Results show that chemical reaction kinetics control the scavenging of oxygen during a relatively short time with respect to the lifetime of the repository. For longer times the scavenging of oxygen is controlled by transport processes in the porous rock matrix. The penetration depth of oxygen along the flowpath depends largely on the hydraulic properties, which may vary significantly between different locations and situations. The results indicate that oxygen, in the absence of easily degradable organic matter, may reach long distances along a flow path during the life-time of the repository (hundreds to thousands of metres in a million years depending on e.g. hydraulic properties of the flow path and the availability of reducing capacity). However, large uncertainties regarding key input parameters exist leading to the conclusion that the results from the model must be treated with caution pending more accurate and validated data. Ongoing and planned experiments are expected to reduce these uncertainties, which are required in order to make more reliable predictions for a safety assessment of a nuclear waste repository.  相似文献   

13.
Subsurface transport of groundwater contaminants is greatly influenced by chemical speciation, precipitation and sorption processes at the mineral-water interface. The retardation of contaminants is often greatest at boundaries between minerals and in fractures and pore spaces. The investigation of the spatial distribution of sorbed contaminants along these boundaries requires micro-analytical techniques. The sorption of dissolved Pu(V) on a natural zeolitic tuff from Yucca Mountain (NV, USA) was examined using microautoradiography (MAR), X-ray diffraction (XRD), electron microprobe (EM) techniques, and synchrotron-based micro-X-ray fluorescence (micro-SXRF). The tuff contained a heterogeneous distribution of zeolites and trace quantities of smectites, Fe oxides (hematite), and Mn oxides (rancieite), which are present as fracture fill and pore space materials. Micro-SXRF studies showed that Pu is mostly associated with bodies of smectite plus Mn oxides, which were typically elevated in Ce, Ga, Nb, Pb, Y, Ca, Ti, and Zn. Sorbed Pu was not associated with Fe-rich bodies, which were enriched in Cl and Rb. Results of the MAR studies were complementary to that of the micro-SXRF studies in that Pu was associated with similar elements in the tuff. Indirect detection of Pu by EM or micro-SXRF (by analyzing Ag developed on the MAR photoemulsion) was a more sensitive method for detecting lower levels of sorbed Pu than the direct detection of sorbed Pu via micro-SXRF in the absence of the photoemulsion.  相似文献   

14.
New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers–Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.  相似文献   

15.
Solutes spread out in time and space as they move downwards from the soil surface with infiltrating water. Solute monitoring in the field is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. A recently developed multi-compartment sampler is capable of measuring fluxes at a high spatial resolution with minimal disturbance of the local pressure head field. The objective of this paper is to use this sampler to quantify the spatial and temporal variation of solute leaching below the root zone in an agricultural field under natural rainfall in winter and spring. We placed two samplers at 31 and 25 cm depth in an agricultural field, leaving the soil above undisturbed. Each sampler contained 100 separate cells of 31 × 31 mm. Water fluxes were measured every 5 min for each cell. We monitored leaching of a chloride pulse under natural rainfall by frequently extracting the collected leachate while leaving the samplers buried in situ. This experiment was followed by a dye tracer experiment. This setting yielded information that widely surpassed the information that can be provided by separate anionic and dye tracer trials, and solute transport monitoring by coring or suction cups. The detailed information provided by the samplers showed that percolation at the sampling depth started much faster (approximately 3 h after the start of rainfall) in initially wet soil (pressure head above − 65 cm) than in drier soil (more than 14 h at pressure heads below − 80 cm). At any time, 25% of the drainage passed through 5–6% of the sampled area, reflecting the effect of heterogeneity on the flow paths. The amount of solute carried by individual cells varied over four orders of magnitude. The lateral concentration differences were limited though. This suggests a convective–dispersive regime despite the short vertical travel distance. On the other hand, the dilution index indicates a slight tendency towards stochastic–convective transport at this depth. There was no evidence in the observed drainage patterns and dye stained profiles of significant disturbance of the flow field by the samplers.  相似文献   

16.
Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10–20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7–9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are capable of corroding even alloys, such as nickel-based Alloy 22, which are considered to be corrosion-resistant under milder conditions.  相似文献   

17.
Subsurface solute transport through structured soil is studied by model interpretation of experimental breakthrough curves from tritium and phosphorus tracer tests in three intact soil monoliths. Similar geochemical conditions, with nearly neutral pH, were maintained in all the experiments. Observed transport differences for the same tracer are thus mainly due to differences in the physical transport process between the different monoliths. The modelling is based on a probabilistic Lagrangian approach that decouples physical and chemical mass transfer and transformation processes from pure and stochastic advection. Thereby, it enables explicit quantification of the physical transport process through preferential flow paths, honouring all independently available experimental information. Modelling of the tritium breakthrough curves yields a probability density function of non-reactive solute travel time that is coupled with a reaction model for linear, non-equilibrium sorption–desorption to describe the phosphorus transport. The tritium model results indicate that significant preferential flow occurs in all the experimental soil monoliths, ranging from 60–100% of the total water flow moving through only 25–40% of the total water content. In agreement with the fact that geochemical conditions were similar in all experiments, phosphorus model results yield consistent first-order kinetic parameter values for the sorption–desorption process in two of the three soil monoliths; phosphorus transport through the third monolith cannot be modelled because the apparent mean transport rate of phosphorus is anomalously rapid relative to the non-adsorptive tritium transport. The occurrence of preferential flow alters the whole shape of the phosphorus breakthrough curve, not least the peak mass flux and concentration values, and increases the transported phosphorus mass by 2–3 times relative to the estimated mass transport without preferential flow in the two modelled monoliths.  相似文献   

18.
Matrix diffusion is an important process for solute transport in fractured rock, and the matrix diffusion coefficient is a key parameter for describing this process. Previous studies have indicated that the effective matrix diffusion coefficient values, obtained from a large number of field tracer tests, are enhanced in comparison with local values and may increase with test scale. In this study, we have performed numerical experiments to investigate potential mechanisms behind possible scale-dependent behavior. The focus of the experiments is on solute transport in flow paths having geometries consistent with percolation theories and characterized by multiple local flow loops formed mainly by small-scale fractures. The water velocity distribution through a flow path was determined using discrete fracture network flow simulations, and solute transport was calculated using a previously derived impulse-response function and a particle-tracking scheme. Values for effective (or up-scaled) transport parameters were obtained by matching breakthrough curves from numerical experiments with an analytical solution for solute transport along a single fracture. Results indicate that a combination of local flow loops and the associated matrix diffusion process, together with scaling properties in flow path geometry, seems to be an important mechanism causing the observed scale dependence of the effective matrix diffusion coefficient (at a range of scales).  相似文献   

19.
Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of 1 x 10(-11) m2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level.  相似文献   

20.
Breakthrough curves of 137Cs and tritiated water injected instantaneously into artificial fractures in Lac du Bonnet granite were analyzed using the analytical solution for a single rock-fracture system and assuming the linear sorption isotherm of the solute. Parameters of nuclide diffusion and sorption in rock matrices, obtained by fitting, varied depending on the flow velocity in the fractures. According to theoretical calculations, different fracture flow velocities lead to different diffusion distances of nuclides in matrices at the same injection volume. As microscopic inhomogeneity is considered to exist in the rock matrix, the average diffusion-sorption characteristics of the matrix within the diffusion distance may have varied with the fracture flow velocity. Surface sorption was marked in fractures that had relatively high matrix sorption-diffusion capacities. The phenomenon was interpreted using the theoretical relationships developed between the surface sorption, matrix sorption and pore diffusion coefficient, and the porosity of matrices.The effect of the nonlinear sorption of solute was examined by numerically solving model equations that incorporate the nonlinear isotherm. This incorporation may contribute to the reduction of deviations between theoretical and experimental BTC's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号