首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, a melting process with addition of SiO2 was applied to treat incinerator fly ash. To describe the encapsulation behaviors of metals quantitatively, the amorphous volume fraction (AVF) of slags was initially determined. Vitrification appeared to reduce the mobility of Cr, Cu, Mn, and Ni instead of significantly immobilizing Cd, Pb, and Zn. It was verified that SiO2 enhanced the formation of an amorphous glassy structure. With the increase of SiO2, the crystalline phases would gradually diminish and transform into a higher silica-connected species. During the formation of slag matrix, Al, Ca, and Mg could modify the glass network, and consequently the encapsulation behaviors of these species would noticeably affect the chemical stability of slags. Significant immobilization of crust metals could be achieved only when a more compact and interconnected amorphous glass network was formed. Hence, it indicated that a higher AVF silica-based slag had a better potential to resist acid attack. In conclusion, for environmental protection, it is important to investigate the correlation between the encapsulation behaviors of metals and the crystalline characteristics of slag structure.  相似文献   

2.
This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 °C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag’s structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts.
Implications:Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.  相似文献   

3.
The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.  相似文献   

4.

This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  相似文献   

5.
以风淬钢渣和高炉渣为主要原料,采用一次烧结法制备微晶玻璃。结果表明,该方法制备的微晶玻璃主晶相为钙铝黄长石(Ca2Al2SiO7),还有少量的镁黄长石(Ca2MgSi2O7),钢渣最大用量达到50%;随着风淬钢渣含量的增加,样品的最佳烧结温度逐渐增加;烧结温度对样品析晶性能的影响明显大于风淬钢渣含量的影响;样品的抗折强度随风淬钢渣的增加呈现出先增大后减小的趋势;样品的密度随风淬钢渣的增加而逐渐减小;直接用风淬钢渣和高炉渣制备出的微晶玻璃具有良好的抗折强度和耐酸碱性,抗折强度最大可达90 MPa,该方法为综合治理冶金渣污染及其综合利用开辟了新的途径。  相似文献   

6.
Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (>99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be ?$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply >88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a >99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520ºC using CaO–CaF2–SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce >99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules.
Implications:The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its “green” image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.  相似文献   

7.
采用SiO2、Al2O3、CaO、Na2CO3、NaCl和Fe2O3等物质来模拟垃圾焚烧的真实灰渣组成,通过实验测定模拟灰渣熔点,建立神经网络模型进行熔点预测,由预测结果来指导进一步实验,得到修正的模型,最终预测出的半球温度(HT)平均误差低于5%。  相似文献   

8.
ABSTRACT

This study investigated the effects of feedstock additives [polyvinyl chloride (PVC) and NaCl] and spray dryer additives (SiO2, CaCl2, NaHCO3) on heavy metal and fly ash removal efficiencies, and on particle size distribution of heavy metals. A spray dryer with an integrated fabric filter was used as an air pollution control device (APCD). Removal efficiencies for fly ash and heavy metals were greater than 95 and 90%, respectively. When additives of PVC or NaCl were used, the concentration of heavy metals distributed in fly ash apparently varied when the particle diameter was <1 μm. Although the effects of the additives SiO2, CaCl2, and NaHCO3 on the elemental size distribution of Cr were insignificant, these additives did slightly increase concentrations of Cd, Zn, and Pb partitioning in coarser particles (>1μm).  相似文献   

9.
The majority of coal ash generated by electric utilities and power plants of industrial manufacturers is disposed of in landfills; the remainder is used primarily as admixtures in construction materials. Predictive computer models used to assess the environmental impact of disposal or utilization need quantitative information on ash composition and mineralogy. Typically, compositions are reported as elemental concentrations, but this data does not indicate the mineral or glass (amorphous) phases in which the elements are contained. Such phases affect the leaching mechanisms and rates. X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray spectrometry, common methods for qualitative mineral identification and particle characterization, were used to quantify coal ash mineral compositions. Samples of industrial coal ash from a stoker boiler and a fluidized bed combustion (FBC) system were analyzed and the results were compared to those for a standard sample of coal ash from the National Institute of Standards and Testing (NIST1633a). The results show that the stoker-boiler ash is similar in composition to the NIST sample. Mullite (AI6Si2O13) dominates the composition of the crystalline fraction and silica (SiO2,) dominates the composition of the amorphous fraction. The FBC ash contains the same minerals, but with large proportions of calcium-based phases: anhydrite (CaSO4), lime (CaO), calcite (CaCO3), and portlandite (Ga(OH)2).  相似文献   

10.
This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O·nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50?100 μm) was as low as 850 °C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 °C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry–differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O·2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6·H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste.
Implications:Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O·nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.  相似文献   

11.
Abstract

In this study, the effects of the basicity on the pouring point of the municipal solid waste incinerator fly ash-sewage sludge ash mixture is investigated. Four kinds of sewage sludge ash, which were collected from several primary and secondary sewage treatment plants and were produced by different processes and sludge conditioning alternatives, were used as modifiers. The results indicate that the pouring point of the mixture increased with increasing basicity, within the range of 0.65–1.90. The pouring point is affected by the contents of the mixtures (CaO, SiO2, Al2O3, and the flux). It is suggested that an increase in the CaO content tends to raise the pouring point, whereas an increase in the SiO2 and/or the Al2O3 contents cause as adverse reaction. The prediction equation, obtained by multilinear regression (significant level is 0.05), is as follows: pouring temperature =1189.6 + 4.19CaO-0.96 SiO2-4.33 Al2O3 (R2 = 0.91). In general, the pouring point decreased when the basicity was <1. The pouring point apparently increased when the basicity was>1.2. The regression squares for the different basicities were between 0.84 and 0.91. From these relationships, we note that a basicity index of 5 gave the best R2 (0.91). From the results of this study, it can be concluded that the modification of the basicity of the fly ash by the addition of sewage sludge ash to lower the pouring point is feasible and leads to a more energy-efficient melting process. In addition, these synthetic slags have a good pozzolanic reactive activity.  相似文献   

12.
Abstract

In this study, an artificial neural network is employed to predict the concentration of ambient respirable particu-late matter (PM10) and toxic metals observed in the city of Jaipur, India. A feed-forward network with a back-propagation learning algorithm is used to train the neural network the behavior of the data patterns. The meteorological variables of wind speed, wind direction, relative humidity, temperature, and time are taken as input to the network. The results indicate that the network is able to predict concentrations of PM10 and toxic metals quite accurately.  相似文献   

13.
Metallurgical slags from primary lead smelting were submitted to a 30-day batch leaching procedure in 20 and 8 mM citric solutions in order to determine the kinetics of release of Pb, Cu, Zn and As. The experiment was coupled with the PHREEQC-2 speciation-solubility modelling and mineralogical study of newly formed products (SEM/EDS, XRD, TEM/EDS and Raman spectrometry). A strong scavenging of metals and metalloids from the 8 mM citric leachate was observed due to the formation of newly formed products. The secondary precipitate consisted of well-developed calcite (CaCO3) crystals and amorphous organo-mineral matrix composed of hydrous ferric oxides and amorphous SiO2. Metals (Pb, Zn, Cu) and arsenic released into the solution were subsequently bound onto the newly formed product (adsorption on oxides) or trapped within the calcite structure (Zn, Mn). Similar scavenging mechanism can be taken into account in real soil systems with lower concentration of citric acid. Then, the covering of slag dumps with a thick soil layer and subsequent re-vegetation might be a possible scenario for slag management on some metallurgical sites.  相似文献   

14.
The evolution of H2S and SO2 from hot blast furnace slags by reaction with H2O has been found to be dependent upon the presence of O2 or H2 in the reaction zone as well as on the temperature. H2 has been found to produce a small increase in H2S and a small decrease in SO2 emission, while O2 has been found to produce a very great inhibiting effect on H2S emission and only a small increase in SO2 emission. The total emission of sulfur bearing gases is much less when H2O + air is blown at the slag than when H2O + Ar is blown at the slag, particularly at 1200°C and above. These effects may be useful in attempts to design systems for slag quenching which will produce less pollution.  相似文献   

15.
A novel slow-release potassium fertilizer (SPF) was synthesized using Pidgeon magnesium slag (PMS) and potassium carbonate, which could minimize fertilizer nutrient loss and PMS disposal problems. Orthogonal experiments were conducted to determine the optimum conditions for synthesis. The potassium (K)-bearing compounds of SPF existed mainly in the form of crystalline phases Ca1.197K0.166SiO4, K2MgSiO4, and K4CaSi3O9, and in the noncrystalline phase. The active silicon content of SPF was 2.09 times as much as that of magnesium slag, and the slow-release character of SPF met the requirement for partly slow-release fertilizer in the national standard (GB/T23348-2009). The best models for describing the K release kinetics in water and 2% citric acid were the Elovich model and the first-order model, respectively. The heavy metal contents of SPF conformed to the national standard for organic–inorganic compound fertilizers, and the leaching mass concentrations of heavy metals and Fluorine were far lower than the limit values of the identification standard for hazardous waste identification for extraction toxicity (GB5085.3-2007), and also met the class II quality standard for ground water. The environmental risk of SPF is therefore very low, but because SPF is alkaline, its effect on soil pH should be taken into account.

Implications: PMS is the solid waste resulting from the production of magnesium metal by Pidgeon’s reduction process. Utilization of PMS in the high-technology and high-value areas may promote the high-efficiency development of worldwide collection metallic magnesium industry and contribute to the reduction of emissions of fine dust to air. This paper presents one of the new techniques in the use of PMS as a slow-release fertilizer by adding K2CO3. The product can serve as a very cost-effective and reliable artificial fertilizer.  相似文献   


16.
Abstract

The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 °C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement.  相似文献   

17.
Abstract

Plasma processing has been identified as a useful tool for immobilizing heavy metal-contaminated wastes into safe, leach-resistant slag. Although much effort has gone into developing this technology on a pilot scale, not much information has been published on basic research topics. A laboratory-scale plasma arc furnace located at the University of Illinois was operated in cooperation with the U.S. Army Construction Engineering Research Laboratories in an effort to establish an understanding of the chemical and physical processes (such as metal volatilization and resultant gas evolution) that occur during thermal plasma treatment of metal-spiked samples. Experiments were conducted on nickel and chromium using a highly instrumented furnace equipped with a 75 kW transferred arc plasma torch. The volatility of nickel and chromium was examined as a function of varying oxygen partial pressures. Oxidizing conditions reduced the total dust gathered for both the nickel and chromium samples, although each dust sample was found to be metal-enriched. Plasma treating increased the leach-resistance of the slags by at least one order of magnitude when compared to unprocessed specimens. The leach- resistance of the nickel-containing slags increased in the presence of oxygen, whereas chromium samples remained relatively constant.  相似文献   

18.
ABSTRACT

Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 °C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.  相似文献   

19.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   

20.
Here we demonstrate a calcifying ureolytic bacterium Bacillus sp. CS8 for the bioremediation of chromate (Cr(VI)) from chromium slag based on microbially induced calcite precipitation (MICP). A consolidated structure like bricks was prepared from chromium slags using bacterial cells, and five stage Cr(VI) sequential extraction was carried out to know their distribution pattern. Cr(VI) mobility was found to significantly be decreased in the exchangeable fraction of Cr slag and subsequently, the Cr(VI) concentration was markedly increased in carbonated fraction after bioremediation. It was found that such Cr slag bricks developed high compressive strength with low permeability. Further, leaching behavior of Cr(VI) in the Cr slag was studied by column tests and remarkable decrease in Cr(VI) concentration was noticed after bioremediation. Cr slags from columns were characterized by SEM–EDS confirming MICP process in bioremediation. The incorporation of Cr(VI) into the calcite surface forms a strong complex that leads to obstruction in Cr(VI) release into the environment. As China is facing chromium slag accidents at the regular time intervals, the technology discussed in the present study promises to provide effective and economical treatment of such sites across the country, however, it can be used globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号