首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments.  相似文献   

2.
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.  相似文献   

3.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   

4.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

5.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

6.
The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three‐year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper Debidue Creek (UDC) watershed and from 42 to 89 for the Watershed 80 (WS80). However, runoff generation from storm events was strongly related to water table elevation, where seasonally variable evapotranspirative wet and dry moisture conditions persist. Seasonal water table fluctuation is independent of, but can be compounded by, wet conditions that occur as a result of prior storm events, further complicating flow prediction. Runoff predictions for LCP first‐order watersheds do not compare closely to measured flow under the average moisture condition normally associated with the CN method. In this study, however, results show improvement in flow predictions using CNs adjusted for antecedent runoff conditions and based on water table position. These results indicate that adaptations of CN model parameters are required for reliable flow predictions for these LCP catchments with shallow water tables. Low gradient topography and shallow water table characteristics of LCP watersheds allow for unique hydrologic conditions that must be assessed and managed differently than higher gradient watersheds.  相似文献   

7.
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   

8.
ABSTRACT: Base-flow samples were collected from 47 sampling sites for four seasons from 1990–91 on the Delmarva Peninsula in Delaware and Maryland to relate stream chemistry to a “hydrologic landscape” and season. Two hydrologic landscapes were determined: (1) a well-drained landscape, characterized by a combination of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained landscape, characterized by a combination of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slope. Concentrations of nitrogen were significantly related to the hydrologic landscape. Nitrogen concentrations tended to be higher in well-drained landscapes than in poorly drained ones. The highest instantaneous nitrogen yields occurred in well-drained landscapes during the winter. These yields were extrapolated over the part of the study area draining to Chesapeake Bay in order to provide a rough estimate of nitrogen load from base flow to the Bay and its estuarine tributaries. This estimate was compared to an estimate made by extrapolating from an existing long-term monitoring station. The load estimate from the stream survey data was 5 ± 106 kg of N per year, which was about four times the estimate, made from the existing long-term monitoring station. The stream-survey estimate of base flow represents about 40 percent of the total nitrogen load that enters the Bay and estuarine tributaries from all sources in the study area.  相似文献   

9.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

10.
ABSTRACT: The Everglades Agricultural Area (EAA) covers 2,850 km2 in area and is characterized by high water table and organic soil. The area is actively irrigated and drained as a function of weather conditions and crop status. Anthropogenic activities in the basin have resulted in nutrient-enriched drainage water that is discharged to Lake Okeechobee and the Everglades ecosystem. Water quantity and quality issues of the basin have become of increasing interest at local, state, and federal levels, so legislative and regulatory measures have been taken to improve water quality in discharges from the basin. In this study, simulation of hydrologic conditions and soil moisture were conducted using 100 years of daily synthetic rainfall data. From the simulations, the statistical distribution of half-month drainage discharge and supplemental water use in the basin was developed. The mean annual drainage/runoff was 49 cm, the mean supplemental water was 30 cm, and the mean annual a real rainfall was 122 cm. On the average, drainage exceeded supplemental water use in the months of June to September while from December to March drainage and supplemental water use were equivalent. Supplemental water use exceeded drainage in the months of October, November, April, and May. High drainage occurred in June and September; smallest drainage was in February. On the average, the highest supplemental water use occurred in May and November. The 10-year return period of annual drainage during wet and dry cycles were 60 cm and 38 cm per year, respectively. The semi-monthly drainage coefficient of variation (cv) is above 100 percent for the period from the second half of October to end of April. The cv is lower than 100 percent for the remaining season (wet season). The purpose of this paper is to present the magnitude, temporal, and frequency distribution of drainage runoff generation and supplemental water use in the EAA basin. Information on statistics of drainage will contribute to the optimization of the design and operation of drainage water treatment systems.  相似文献   

11.
ABSTRACI:. Slash burning is a common site preparation technique used after timber harvest throughout the Southeastern United States. Little quantitative information exists on the hydrologic response to burn severity. This study compared the effects of low-severity and high-severity burns on runoff and sediment yields during rainfall simulation and during natural rainfall in the Southern Appalachian Mountains. Fire severity was largely determined by moisture conditions of the forest floor prior to ignition. Runoff and sediment yield variability was high between plots within the same treatment area due to differences in forest floor characteristics and infiltration rates. Conditions of high-severity resulted when burning was conducted with relatively dry fuels. Sediment yields were 40-times greater for the high-severity treatment areas than the low-severity treatment areas.  相似文献   

12.
Aeration has been promoted as improving infiltration of rainfall and extending grass or forage productivity, but research on the impact of this practice on P losses from grasslands has had mixed results. We designed a study to determine at the field scale, using a paired watershed approach, the impact of slit aeration on runoff volume and P losses in runoff from fescue (Festuca arundinacea Schreb.)/bermudagrass (Cynodon dactylon L.) hay fields fertilized with broiler litter. Three pairs of 0.8-ha fields, each with similar soils (Typic Kanhapludults, Aquic Hapludults, and Aquultic Hapludalfs), were fertilized with broiler litter and monitored under similar management from 1995 through 1998, then one field in each pair received aeration treatment from 2001 through 2003. In the field with mostly well-drained soils, grassland aeration reduced surface runoff volume and mass losses of dissolved reactive P (DRP) in runoff by approximately 35%. In contrast, when poorly drained soils dominated, grassland aeration increased runoff volume (4.8 mm/runoff event) and mass losses of DRP and total P (0.25 kg TP ha-1 per runoff event). This implies that aeration of well-drained soils in the top poultry-producing counties of Georgia (0.2 million ha) could decrease dissolved phosphorus losses by more than 500 Mg P each year. This is not the case if soils are poorly drained.  相似文献   

13.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

14.
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.  相似文献   

15.
ABSTRACT: Runoff and sediment production was measured under simulated and natural rain from 1×5 m plots established on a cutover and burned mixed pine-hardwood site in the Georgia Piedmont. Trees on the study site were cut and removed without mechanical disturbance. Slash was removed, kiln dried and replaced on the slope, and burned prior to plot installation. Three slopes, two rainfall intensities, three rainfall simulations representing three soil moisture conditions, and two replicate plots were used. The experiment was repeated four times during the period July 1989-July 1990 to investigate the effects of temporal changes in surface conditions and particularly root mat and residual forest floor decemposition. Runoff and sediment production from natural rainfall events was also measured from these plots during the period February-October 1990. Results of all measurements indicate that runoff and sediment production were generally low because of the protection afforded by the residual forest floor following burning. However, temporary hydrophobic conditions caused by a dry organic layer produced relatively high runoff rates and high sediment for the first few minutes of runoff for some of the simulated rainfall applications.  相似文献   

16.
ABSTRACT: The hydrologic responses from an agricultural watershed in southeast Nebraska were investigated under an array of physiographic, hydrologic, meteorologic, and management conditions. For analytical purposes, the hydrologic responses were narrowed to include only runoff and sediment yield. The study was performed by utilizing the ANSWERS (Areal Nonpoint Source Watershed Environment Response Simulation) hydrologic-simulation model. Results of this study indicate that, generally, nonstructural (agronomic) Best Management Practices (BMPs) have a more significant impact in controlling erosion and nonpoint-source pollution than structurally oriented BMPs. The percentage of reduction in average soil loss as a result of changing tilage systems from conventional to chisel plow was in the mid-40s. The corresponding percentages of reduction in sediment yield from the watershed under minimum tillage and no-till systems were in the mid-60s and mid-80s, respectively. The impact of these management strategies on runoff varied considerably. That is primarily based on the watershed's antecedent soil moisture condition, land use, and the growth stage of crops. Generally, an intense, short, thunderstorm type of rainfall event had more relative impact on runoff, and therefore sediment yield than a long, gentle, and steady event.  相似文献   

17.
Sensitivity of SCS Models to Curve Number Variation1   总被引:1,自引:0,他引:1  
ABSTRACT: The Soil Conservation Service (SCS) models, including the TR-20 computer program and the simplified methods in TR-55, are widely used in hydrologic design. The runoff curve number (CN), which is an important input parameter to SCS models, is defined in terms of land use tretments, hydrologic, condition, antecedent soil moisture, and soil type. The objective of this study was to evaluate the sensitivity of the SCS models to errors in CN estimates. The results show that the effects of CN variation decrease as the design rainfall depth increases, such as for the larger storm events. The value and use of the sensitivity curves are demonstrated using a comparison of Landsat and conventionally derived curve numbers for three watersheds in Pennsylvania.  相似文献   

18.
ABSTRACT: The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base-flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well-drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.  相似文献   

19.
ABSTRACT: The effect of flow persistence on seasonal patterns of watershed runoff was modeled by using runoff of the immediate antecedent month as an index. Monthly runoff was expressed as a function of monthly rainfall, season of the year, and runoff of the antecedent month. The three independent variables were expressed functionally as sliding polynomials, thus producing a piece-wise, form-free, three-dimensional causative structure. A model form allowing complete interactivity of the three independent variables could not be optimized because of insufficient data with high values of both antecedent runoff and monthly rainfall. A model with reduced interactivity was successfully optimized. Data sets from five watersheds ranging from 0.14 to 398 square miles were analyzed. Results were presented as a series of contour maps that showed contours of monthly runoff in the data space of season and monthly rain. In the series of maps, the patterns of the runoff contours changed with changing values of antecedent runoff. During the wet season of the year the contours changed significantly with antecedent runoff, but changes in the dry season were minimal. The quantitative change of runoff was more readily portrayed with cross-sections through the contoured surfaces.  相似文献   

20.
This study assesses a large‐scale hydrologic modeling framework (WRF‐Hydro‐RAPID) in terms of its high‐resolution simulation of evapotranspiration (ET) and streamflow over Texas (drainage area: 464,135 km2). The reference observations used include eight‐day ET data from MODIS and FLUXNET, and daily river discharge data from 271 U.S. Geological Survey gauges located across a climate gradient. A recursive digital filter is applied to decompose the river discharge into surface runoff and base flow for comparison with the model counterparts. While the routing component of the model is pre‐calibrated, the land component is uncalibrated. Results show the model performance for ET and runoff is aridity‐dependent. ET is better predicted in a wet year than in a dry year. Streamflow is better predicted in wet regions with the highest efficiency ~0.7. In comparison, streamflow is most poorly predicted in dry regions with a large positive bias. Modeled ET bias is more strongly correlated with the base flow bias than surface runoff bias. These results complement previous evaluations by incorporating more spatial details. They also help identify potential processes for future model improvements. Indeed, improving the dry region streamflow simulation would require synergistic enhancements of ET, soil moisture and groundwater parameterizations in the current model configuration. Our assessments are important preliminary steps towards accurate large‐scale hydrologic forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号