首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以木屑型香菇菌菌渣为原料,采用微波辐照碳酸钾(K2CO3)活化法制备菌渣活性炭。探讨了活化时间、K2CO3与菌渣质量比、活化功率对活性炭得率及吸附性能的影响,得到适宜的制备条件为:活化时间16 min,K2CO3与菌渣质量比0.8∶1,活化功率520 W。该制备条件下所得活性炭碘值为729.94 mg/g,亚甲基蓝吸附值为163.47mg/g,得率为23.4%。SEM、N2吸附、零点电荷p H值的表征结果表明,微波辐照K2CO3活化起到了很好的造孔作用,菌渣活性炭的孔大多为直径介于3~6 nm的中孔。根据BET方程计算的菌渣活性炭比表面积(SBET)为674.2 m2/g,孔容为0.54 m L/g,平均孔径为3.7 nm,菌渣活性炭的p HZPC为5.23。  相似文献   

2.
基于KOH活化法的核桃壳基活性炭制备及其表征   总被引:1,自引:0,他引:1  
采用农林废弃物制备比表面积大、微孔结构发达的活性炭,能够缓解资源短缺问题,减少环境污染,并且提高活性炭在气相吸附方面的利用价值。以核桃壳为原料、KOH为活化剂,采用单因素法探讨碱炭比、活化温度和活化时间对活性炭得率、碘吸附值的影响,确定了核桃壳基活性炭制备的最佳工艺条件。采用场发射扫描电镜、孔径分析仪、傅里叶红外光谱仪分析了活性炭的微观形貌、孔径结构、表面化学性质。结果表明:当碱炭比为3∶1、活化时间为60 min、活化温度为800℃时,制备的核桃壳基活性炭的比表面积为1 551.85 m2/g,总孔容为0.79 cm3/g,微孔比表面积为1 491.22 m2/g,微孔率为89.87%。该活性炭的比表面积大,微孔结构发达,同时极微孔含量很高。  相似文献   

3.
直接采用化学法,在一定工艺处理后物料产生自胶合作用,而无需再添加胶黏剂即可生产成型颗粒活性炭.采用正交试验法优化磷酸活化法制备颗粒活性炭的工艺条件.结果表明,磷酸法制备颗粒活性炭的关键是选择合适的浸渍比以及产生塑化的捏合温度,这样有利于物料产生自胶合作用以及产品强度的提高.另外,影响颗粒活性炭碘吸附值最大的因素是磷酸质量分数,影响颗粒活性炭亚甲蓝吸附值及强度最大的因素是浸渍比.在磷酸质量分数为60%,浸渍比为100%,捏合温度为170 ℃,捏合时间为60 min的最优条件下可制得碘吸附值为1 004.15 mg/g,亚甲基蓝吸附值为172.5 mg/g,强度为93.6%,比表面积为1 694.150 m2/g的颗粒活性炭.  相似文献   

4.
通过对赤泥进行焙烧、酸浸活化,作为环境修复材料对亚甲基蓝的吸附性能进行测试。试验表明,焙烧酸浸后赤泥吸附亚甲基蓝的最佳吸附条件为pH=8,吸附剂最佳投加量为0.9 mg/mL,吸附时间40min,吸附率为80.62%。对实验数据进行相关数学模型拟合,结果表明,该等温吸附平衡符合Langmuir模型,说明这种吸附更趋向于单层吸附。对比几种不同吸附材料粒状活性炭、粉末活性炭、赤泥、焙烧后酸浸赤泥及焙烧赤泥对亚甲基蓝吸附效果,可以看出焙烧酸浸后赤泥对亚甲基蓝的吸附效果仅次于粉末状活性炭,而高于赤泥、粒状活性炭及焙烧赤泥。  相似文献   

5.
阐述了利用微波辐射法来再生活性炭,并分别考察需再生活性炭的浓度、微波功率、微波的时间以及碱度对活性炭再生后吸附性能的影响.实验结果表明,将1.5 g活性炭在100 mL浓度为1 mol/L的NaOH溶液活化,在微波功率为560 W,微波时间为3 min的条件下再生性能最佳;再生后的活性炭去吸附焦化废水可将焦化废水的COD降到了100 mg/L,达到了废水的出水标准.  相似文献   

6.
主要研究了环氧氯丙烷改性花生壳对亚甲基蓝的吸附作用.考察了溶液pH值、亚甲基蓝初始质量浓度、吸附时间、温度等因素对改性花生壳吸附亚甲基蓝效果的影响.结果表明,当温度为298 K,亚甲基蓝初始质量浓度为100 mg/L时,在改性花生壳用量为2g/L,溶液pH值为6.00,吸附时间为60 min的条件下,亚甲基蓝吸附量最大,可达49.25 mg/g.在试验条件下,改性花生壳对亚甲基蓝的吸附符合拟二级动力学方程,吸附平衡符合Freundlich等温方程,吸附焓变△H>0,反应吉布斯自由能△G<0,表明该吸附过程为自发进行的吸热过程.  相似文献   

7.
采用软模板法,选取葡萄糖、蔗糖、木质素及酚醛树脂作为碳源,分别以P123,F127为单一模板剂和P123/F127为复合模板剂,通过控制盐酸体积、炭烧温度及时间等工艺条件,探究制备介孔碳材料的最佳条件,制备介孔碳材料用于处理含5%NaCl的亚甲基蓝模拟废水,亚甲基蓝初始质量浓度为300 mg/L。结果表明,选用间苯三酚/甲醛为碳源,质量比为1:3的P123/F127复合模板剂,0.15 mL的盐酸为催化剂,600℃的炭烧温度,3 h的炭烧时间,制备出的介孔碳材料最好,其对高盐亚甲基蓝溶液的吸附量为385.19 mg/g,是活性炭的1.83倍,并缩短了吸附平衡时间。  相似文献   

8.
对采自陕西榆林地区的某煤焦油渣元素组成、XRF、XRD、TG/DSC的分析结果表明,其主要成分为碳,约55.52%~80.18%,且主要处于小颗粒不规则非晶相状态,活化性能好,其中重金属以及微量元素Cr、Ni含量较少,制备吸附材料不会产生二次污染.氮气保护条件下,600 ℃左右的失重率为69.15%~88.99%.隔绝氧气条件下,600 ℃物理高温活化改渣2 h,同时于25 ℃、247 r/min试验条件下根据GB/T 12496.8-1999测得物理活化后渣碘值、亚甲基蓝值标定的吸附性能指标分别为400~500 mg/g、66~150 mg/g.同等试验条件下分析纯活性炭碘值为855.30 mg/g,亚甲基蓝吸附值为200.17 mg/g.说明煤焦油渣改性后作吸附材料是可行性的,且成本低,可利用价值高.  相似文献   

9.
为推进累托石在水处理中的应用,对其进行锂盐改性、造粒及微波活化研究,通过吸附亚甲基蓝比较其处理效果,并对其在水中的填充方式进行了探讨。结果表明,锂累托石吸附性能好,对亚甲基蓝的去除率达97%以上,吸附平衡时间短,仅5 min,是原累托石的1.64倍;为解决固液分离而进行的造粒,堵塞了空隙,降低了吸附性能,采用功率为500 W,辐照时间为10 min的微波对颗粒进行活化后,孔径数量及大小增加,吸附性能提高,锂累托石颗粒散装于容器中需要搅拌,或采用网状框架装置将其束缚固定于水中,便于回收与再生。  相似文献   

10.
采用超声辅助活性炭处理亚甲基蓝和甲基橙两种模拟染料废水。考察了活性炭用量、超声温度、超声功率、超声时间对两种染料的去除效果。研究结果表明:在亚甲基蓝和甲基橙废水初始质量浓度均为100 mg/L条件下,超声功率为60 W,超声时间为20 min,活性炭投加量为1.0 g,超声温度为80℃时,超声辅助活性炭对两种染料的处理效果最好,分别为93.46%和95.60%。数据分析发现,活性炭用量对两种染料的去除率存在极显著性差异。超声辅助活性炭处理两种染料的反应均呈现一级动力学反应特征。  相似文献   

11.
为探究煤矿瓦斯气体吸附存在的孔隙孔径大小及煤矿瓦斯突出压力定为0.74 MPa的微观原因,采用计算化学材料软件Material Studio对碳材料孔隙孔径进行模型构建,通过Sorption模块计算不同碳材料孔隙孔径对甲烷的吸附情况,得到了单层和双层不同孔隙孔径碳材料对甲烷的吸附数据,然后用内插法得到0.74 MPa条件下单层和双层孔隙孔径碳材料对甲烷的吸附量。结果表明:单层和双层碳材料孔隙孔径对甲烷吸附的最佳孔径分别是10和8;0.74 MPa条件下不同孔隙孔径碳材料对甲烷的吸附量均在75%以上,对于最佳孔径甚至在90%以上。  相似文献   

12.
为实现白洋淀芦苇的有效利用,以白洋淀淀区芦苇(白苇)为原料,以KOH、K2CO3为活化剂,综合考虑制备过程中的剂料比、浸渍时间、活化温度、活化时间等因素的影响,通过正交试验,以碘吸附值和亚甲蓝吸附值综合作为吸附性能高低的评价标准,进行活性炭制备方法研究。结果表明:在以KOH为活化剂、剂料比为4∶1、浸渍时间36 h、850℃下活化1 h的条件下,制备的芦苇基生物质活性炭碘吸附值最高,亚甲基蓝吸附值较高;以K2CO3为活化剂、剂料比为3∶1、浸渍时间12 h、900℃下活化2 h的条件下,制备的芦苇基生物质活性炭有最高的碘吸附值和对亚甲蓝具有良好的吸附性。制备的生物质活性炭碘吸附值均高于国家活性炭一级品标准(1 000 mg/g),具备一定的实用性。  相似文献   

13.
Jatropha curcas is a multipurpose non-edible oil yielding perennial shrub and it is a drought tolerant plant. Its seeds are used to produce bio-diesel. Jatropha husk, an agricultural solid waste, generated from bio-diesel industries, was used as a starting material to produce activated carbon. Using jatropha husk activated carbon (JHC), the feasibility of removal of toxic anions, dyes, heavy metals and organic compounds from water was investigated. Sorption of inorganic anions such as nitrate, selenite, chromate, vanadate and phosphate and heavy metal such as nickel(II) has been studied. Removal of organics such as bisphenol, 2-chlorophenol also have been investigated. Adsorption of acid dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, direct dyes such as direct red-12B, congo red, reactive dye like procion red were investigated to assess the possible use of the adsorbent. Results show that jatropha husk activated carbon can be used as an adsorbent for the removal of toxic pollutants from water.  相似文献   

14.
用化学共沉淀法制备磁性碳纳米管,然后以聚合氯化铝(PAC)通过微波法修饰得到磁性聚合氯化铝碳纳米管复合材料,并用以去除水中的腐殖酸(HA),对复合材料的组成与结构进行了表征,考察了不同微波制备条件下复合材料去除HA的效果,研究了吸附工艺中HA去除的影响因素,对复合材料同步去除HA和浊度的可行性进行了探讨。能谱、X-射线衍射及红外光谱分析表明,PAC和磁性物质Fe3O4、γ-Fe2O3成功负载于碳纳米管上。PAC修饰显著提高了磁性碳纳米管对HA的去除率。在微波功率600 W及微波时间6 min条件下得到的复合材料去除HA的效果最佳,去除率达99.15%。当HA初始质量浓度小于25 mg/L时,HA去除率较高,但高于25 mg/L后吸附量变化不大而去除率下降;HA去除率随材料投加量增大而增大,但大于0.5 g/L后基本不变;在酸性与中性条件下HA去除率较高,在碱性条件下急剧下降;对于初始质量浓度为20 mg/L的HA溶液,吸附前5 min的HA去除速率很快,90 min时达到吸附平衡,平衡吸附量为39.48 mg/g;温度对去除HA没有影响。控制适当的条件,可同步去除HA和浊度,去除率同步达95%以上。  相似文献   

15.
微波辐射烟杆氯化锌法制造活性炭工艺   总被引:10,自引:0,他引:10  
提出了利用烟杆废料制造活性炭的新工艺.采用正交试验法对影响活性炭性能的因素,如微波辐射的功率、辐射时间、氯化锌浓度等进行了系统研究,得到了最佳工艺条件:微波辐射功率750 W,辐射时间7 min,氯化锌浓度为50%,利用该工艺条件所制备活性炭的产率为34.7%,亚甲蓝脱色力为17 mL/0.1 g,碘吸附值为1 093.4 mg/g.对比该活性炭与市售一级活性炭的微观结构,发现其具有更发达的微观孔隙结构.同传统方法相比,微波辐射法缩短了工艺时间,提高了产品性能.  相似文献   

16.
以重金属铜离子为研究对象,设计了包含黏土防护层、壤土运移层、竹炭(碳粉)净化层组成的复杂室内大土柱(直径Φ=280 mm)模型。在重金属铜离子运移试验研究的基础上,着重分析了铜离子在具有复杂分层结构土柱模型中的迁移规律。结果表明,黏土对铜离子的吸附阻滞作用显著高于壤土,阻滞效率在91%左右。经黏土阻滞后,碳粉净化层与壤土层自净效率约占7.5%,显著降低了模型出口铜离子残余量(可降至总量的0.45%)。对设计研究模型,试验结果充分体现出黏土吸附阻滞作用为主、碳粉净化作用为辅的显著特性。因此,如将此理念推广至地下水环境保护实践,则可简称之为"以防为主,以治为辅"的地下水环境保护理念。  相似文献   

17.
改性沸石吸附氨氮及电化学再生研究   总被引:1,自引:0,他引:1  
研究了改性沸石对氨氮的吸附效能、动力学机制以及电化学再生效果。间歇和连续试验结果表明:沸石经改性后,能高效去除水中的氨氮,其吸附等温式更符合Langmuir模型,沸石、改性沸石的饱和吸附量分别为8.09 mg/g和13.55 mg/g,沸石的钠型改性能显著提高吸附容量约40.3%;颗粒内扩散是改性沸石吸附氨氮的控制性步骤,可以利用Vermeulen的内扩散模型进行描述;利用电化学再生吸附饱和后的沸石,再生液为NaCl溶液,阳极涂覆RuO2-Ti,再生时间为3h,可高效地再生沸石,无二次污染物排出,对环境冲击较小。  相似文献   

18.
以氯化锌为活化剂,通过微波诱导热解法制备小麦秸秆吸附剂,并以微波功率、热解时间和氯化锌质量分数为影响因素,碘吸附值为响应值,采用响应面法对小麦秸秆吸附剂的制备工艺进行优化。结果表明,热解时间和微波功率对碘吸附值的交互作用明显。响应面优化工艺分析,发现当热解时间4.03 min、微波功率569.0 W,氯化锌质量分数为31.24%时,碘吸附值最大,为643.33 mg/g。另外,小麦秸秆吸附等温线与I型相似,吸附剂的微孔容积为0.238 4cm3/g,吸附剂的BJH孔径分布表现窄小,最高峰出现在2.1nm左右。处理Cr(VI)废水的吸附试验,发现Cr(VI)的去除率可以达到70%以上。研究表明,微波诱导热解法及响应面优化工艺制备的小麦秸秆吸附剂技术可行且具有良好的重金属废水处理应用前景。  相似文献   

19.
载乙醇活性炭在微波场中的升温行为研究   总被引:3,自引:0,他引:3  
研究了载乙醇活性在微波场中的升温行为,主要包括水和乙醇在微波场中的升温情况,以及微波功率,活性炭量,氮气线速对活性炭升温行为的影响,结果表明,水与乙醇在微波场中能吸收微波能,从而使其温度升高,微波功率越大,活性炭升值越快,活性炭最高温度也更高,活性炭少于5g时温度上升速率随活性炭量的增加而加快,活性炭量多于5g时则相反,氮气线速增加,活性炭升温速率下降,活性炭最高温度降低。  相似文献   

20.
在N2保护下采用不同高温对活性炭进行热改性,得到了4种改性活性炭(AC-1至AC-4)。采用气体吸附仪、Boehm滴定、傅里叶变换红外光谱仪(FTIR)对活性炭表面的物化性质进行了表征。通过等温吸附试验考察了改性前后活性炭对甲萘威的吸附性能,确定了最佳改性温度为600℃,探讨了活性炭的吸附能力与其表面物化性质之间的关系。结果表明:热改性使活性炭表面的物化性质发生了改变,活性炭对甲萘威的吸附量与其比表面积、孔容、表面酸性官能团和O元素含量具有显著相关性;活性炭对甲萘威的吸附行为符合准二级吸附动力学方程和Langmuir等温吸附方程,颗粒内扩散模型表明内扩散不是控制活性炭吸附速率的唯一阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号