首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same field’s drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   

2.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same fields drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   

3.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

4.
Nitrous oxide (N2O) emissions were measured weekly to fortnightly between April 2001 and March 2002 from two riparian ecosystems drainingdifferent agricultural fields. The fields differed in the nature of the crop grown and the amount of fertiliser applied. Soil water content and soil temperature were very important controls of N2O emission rates, with a ‘threshold’ response at 24% moisture content (by volume) and 8 °C, below which N2O emission was very low.N2O fluxes were higher at the site that had receivedthe most fertiliser N, but NO3 - was not a limiting factor at either site. There was also a ‘threshold’ effect of rainfall, in which major rainfall events (≥10 mm) triggered a pulse of high N2O emission if none of the other environmental factors were limiting. These results suggest the existence of multiple controls on N2O emissions operating at a range of spatial and temporal scales and that non-linear relationships, perhaps with a hierarchical structure, are needed to model these emissions from riparian ecosystems.  相似文献   

5.
Estimates of soil N2O and NOemissions at regional and country scales arehighly uncertain, because the most widely usedmethodologies are based on few data, they do notinclude all sources and do not account forspatial and seasonal variability. To improveunderstanding of the spatial distribution of soilNO and N2O emissions we have developedsimple multi-linear regression models based onpublished field studies from temperate climates.The models were applied to create spatialinventories at the 5 km2 scale of soil NOand N2O emissions for Great Britain. The N2O regression model described soilN2O emissions as a function of soil N input,soil water content, soil temperature and land useand provided an annual N2O emission of 128 kt N2O-N yr-1. Emission rates largerthan 12 kg N2O-N ha-1 yr-1 werecalculated for the high rainfall grassland areasin the west of Great Britain.Soil NO emissions were calculated using tworegression models, which described NO emissionsas a function of soil N input with and without afunction for the water filled pore space. Thetotal annual emissions from both methods, 66 and7 kt NO-N yr-1, respectively, span the rangeof previous estimates for Great Britain.  相似文献   

6.
Beier  C.  Rasmussen  L.  Pilegaard  K.  Ambus  P.  Mikkelsen  T.  Jensen  N. O.  Kjøller  A.  Priemé  A.  Ladekarl  U. L. 《Water, Air, & Soil Pollution: Focus》2001,1(1-2):187-195
The fluxes of the major nitrogen compounds havebeen investigated in many ecosystem studies over the world.However, only in few studies has attention been drawn to theimportance of the fluxes of minor gaseous nitrogen compoundsto complete the nitrogen cycle. In Denmark a detailed study onthe nitrogen cycle in an old beech forest has been implementedin 1997 at Gyrstinge near Sorø, Zealand. The study includesthe fluxes of the gases NO, N2O and water mediatedtransport of NO3 - and NH4 +. Measurementsof the fluxes of the gaseous compounds are performed withmicro-meteorological methods (eddy-correlation and gradient)and with chambers. Water mediated fluxes encompass rain,throughfall, stem-flow and leaching from the root zone. Thehydrological model is verified by TDR measurements. The findings show that the total water mediated N input tothe forest floor with throughfall and stemflow was 25.6 kg Nha-1 yr -1, and open field wet deposition withprecipitation was 19.0 kg N ha-1 yr -1. The internalcycling of N in the ecosystem measured as turnover oflitterfall and plant uptake was 100 kg N ha-1 yr -1and 14 kg N ha-1 yr -1, respectively. The fluxes ofthe gaseous N compounds NO and N2O were of minorimportance for the total N turnover in the forest, NOxemission being <1 kg N ha-1 yr -1 and N2Oemission from the soil being 0.5 kg N ha-1 yr -1 withno significant difference between wet and dry soils.Concentrations of NO3 - and NH4 + in thesoil solution beneath the rooting zone are very small andconsequently the N leaching is almost negligible. It isconcluded that the nitrogen mass balance of this old beechforest ecosystem mainly is controlled by the input by dry andwet deposition and a large internal N cycle with a fast litterturnover. The nitrogen input tothe forest ecosystem which currently exceeds the critical loadby 5 kg N ha-1 yr -1is mainly accumulated in the soil and no significant nitrateleaching is occurring.  相似文献   

7.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO 3 and NH 4 + aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH 4 + and NO 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH 4 + and NO 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH 4 + , but the relationship between NH 4 + and N deposition (ln NH 4 + = 0.62 ln Ndeposition + 0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

8.
The impact of nitrogen fertilizers on gaseous emissions duringwinter and spring-thaw is not well understood and was the objective of this research. Using a micrometeorological method,N2O, NO and NOx fluxes from ryegrass were measured from November 1997 to March 1998. Three different mineralfertilizers were applied in November: urea (U), slow-release urea(SRU) and ammonium nitrate (AN). N2O emissions during the winter were small, increasing significantly in March. Total losses of N2O-N were significantly higher from SRU and U plots, with winter N2O emissions accounting for 50% of annual losses. Nitric oxide fluxes from all plots weresmall during the measurement period (<0.9 ng N m-2 s-1). The NO fluxes from U and AN fertilized plots were significantly higher than from SRU and control plots. NO2 fluxes were always negative (–6 ng N m-2 s-1)indicating deposition, but decreased to –2 ng N m-2s-1 when snow was present on the soil surface. Our resultsindicate that the form of inorganic N applied has an effect on NO+ N2O emissions but not on NO2 fluxes.Sponsored by CAPES – Brasília, Brazil  相似文献   

9.
Amounts of readily soluble nutrients on asphalt parking lot surfaceswere measured at four locations in metropolitan Phoenix, Arizona, U.S.A. Using a rainfall simulator, short intense rainfall events were generated to simulate `first flush' runoff. Samples were collected from 0.3 m2 sections of asphalt at 8 to 10 sites on each of four parkinglots, during the pre-monsoon season in June-July 1998 and analyzed for dissolved NO3 --N, NH4 +-N, soluble reactive phosphate (SRP), and dissolved organic carbon (DOC). Runoff concentrations varied considerably for NO3 --N and NH4 +-N (between 0.1 and 115.8 mg L-1) and DOC (26.1 to 295.7 mg L-1), but less so for SRP (0.1 to 1.0 mg L-1), representing average surface loadings of 191.3, 532.2, and 1.8 mg m-2 respectively. Compared with similar data collected from undeveloped desert soil surfaces outside the city, loadings of NO3 --N and NH4 +-N on asphalt surfaces were greater by factors of 91 and 13, respectively. In contrast, SRP loads showed little difference between asphalt and desert surfaces. Nutrient fluxes in runoff from a storm that occurred shortly after the experiments were used to estimate input-output budgets for 3 of the lots under study. Measured outputs of DOC and SRP were similar to those predicted using rainfall and experimentally determined surface loadings, but for NH4 +-N and particularly for NO3 --N, estimated rainfall inputs and surface runoff were significantly higher than exports in runoff. This suggests that parking lots may be important sites for nutrient accumulation and temporary storage in arid urban catchments.  相似文献   

10.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

11.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO? 3), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO? 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO? 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment ‘nitrate leaching zones’ is proposed, whereby most stream NO? 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO? 3 concentrations.  相似文献   

12.
Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha-1 a-1). Two forested catchments (1500 m2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH4NO3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15N. Additionally, soil N transformationswere studied in replicated plots. Pre-treatment NO3 --N leaching was 4 kg ha-1 a-1 from both catchments, and remained between 2.5 and 4.8 kg ha-1 a-1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha-1, almost 90% of which was labelled with 15N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated.  相似文献   

13.
In order to assess nitrous oxide (N2O) emissions from typical intensively managed grassland in northern Britain fluxes were measured by eddy covariance using tuneable diode laser absorption spectroscopy from June 2002 to June 2003 for a total period of 4000 h. With micrometeorological techniques it is possible to obtain a very detailed picture of the fluxes of N2O at field scale (103–104 m2), which are valuable for extrapolation to regional scales. In this paper three of the four fertilizer applications were investigated in detail. N2O emissions did not always show a clear response. Hourly fluxes were very large immediately after the June 2002 nitrogen fertilizer application, peaking at 2.5 mg N2O–N m?2 s?1. Daily fluxes were averaging about 300 ng N2O m?2 s?1 over the 4 days following fertilizer application. The response of N2O emissions was less evident after the August fertilization, although 2 days after fertilizer application an hourly maximum flux of 554 ng N2O–N m?2 s?1 was registered. For the rest of August the flux was undetectable. The differences between fertilization events can be explained by different environmental conditions, such as soil temperature and rainfall. A fertiliser-induced N2O emission was not observed after fertilizer application in March 2003, due to lack of rainfall. The total N2O flux from June 2002 to June 2003 was 5.5 kg N2O–N ha?1y?1, which is 2.8% of the total annual N fertilizer input.  相似文献   

14.
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO? 3?N and NH+ 4?N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha?1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha?1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

15.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

16.
In order to assess nitrous oxide (N2O) emissions from typical intensively managed grassland in northern Britain fluxes were measured by eddy covariance using tuneable diode laser absorption spectroscopy from June 2002 to June 2003 for a total period of 4000 h. With micrometeorological techniques it is possible to obtain a very detailed picture of the fluxes of N2O at field scale (103–104 m2), which are valuable for extrapolation to regional scales. In this paper three of the four fertilizer applications were investigated in detail. N2O emissions did not always show a clear response. Hourly fluxes were very large immediately after the June 2002 nitrogen fertilizer application, peaking at 2.5 mg N2O–N m–2 s–1. Daily fluxes were averaging about 300 ng N2O m–2 s–1 over the 4 days following fertilizer application. The response of N2O emissions was less evident after the August fertilization, although 2 days after fertilizer application an hourly maximum flux of 554 ng N2O–N m–2 s–1 was registered. For the rest of August the flux was undetectable. The differences between fertilization events can be explained by different environmental conditions, such as soil temperature and rainfall. A fertiliser-induced N2O emission was not observed after fertilizer application in March 2003, due to lack of rainfall. The total N2O flux from June 2002 to June 2003 was 5.5 kg N2O–N ha–1y–1, which is 2.8% of the total annual N fertilizer input.  相似文献   

17.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

18.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

19.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

20.
Co-composting of chicken manure, straw and dry grasses was investigated in a forced aeration system to estimate the effect of aeration rates on NH3, CH4 and N2O emissions and compost quality. Continuous measurements of gas emissions were carried out and detailed gas emission patterns were obtained using an intermittent-aeration of 30 min on/30 min off at rates of 0.01 (A1), 0.1 (A2) and 0.2 (A3) m3 min−1 m−3. Concentrations of CH4 and N2O at the low aeration rate (A1) were significantly greater than those at the other two rates, but there was no significant difference between the A2 and A3 treatments. CH4 and N2O emissions for this mixture could be controlled when the composting process was aerobic and ammonia emissions were reduced at a lower aeration rate. Comparison of CH4, N2O, NH3 emissions and compost quality showed that the aeration rate of the A2 treatment was superior to the other two aeration rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号