首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

2.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

3.
Abstract:  Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo ( Scelorchilus rubecula ), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.  相似文献   

4.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

5.
Understanding the rules and factors that drive the foraging behavior of large herbivores is important to describe their interaction with the landscape at various spatial scales. Some unresolved questions refer to landscape-behavioral interactions that result in oriented or random search in seasonally changing landscapes. Remotely sensed position data indicate that herbivores select local patches of heterogeneous landscapes depending on a complex host of dynamically varying animal and environmental conditions. Since foraging paths consist in successions of relatively short steps, increasing the frequency at which position information is acquired would contribute to entangle the mechanisms resulting in herbivores’ foraging paths. We addressed the question whether herbivores would obtain information at a patch scale that would modify their distribution at a landscape scale based on directed movement or navigation ability. We considered a set of 100,000 high-frequency (1 min intervals) position data of several free-ranging sheep (Ovis aries) at a seasonal-varying range (Patagonian Monte, Argentina) and observed their movements at landscape and at single vegetation patch scales. At a landscape scale, we inspected the spatial co-variation of seasonally varying forage offer and ewes’ movement speeds. At a patch scale, we developed a phase-state (P-S) model of movement cycles based on the occurrence of behavioral phases along foraging paths, and fitted it to the observed daily time series of ewes’ movement speeds. Ewes were preferentially distributed in areas with high forage offer during periods of low forage availability and the reverse occurred during the season of high forage availability. Parameters of the model of activity cycles amenable to control by ewes (duration of speed phases, time elapsed between speed cycles) did not covariate with forage offer, but varied significantly among ewes. The shape (kurtosis) parameter of the model of movement cycles, one which is unlikely under ewes’ control, co-varied significantly with spatial forage offer but did not differ among ewes. We conclude that ewes allocated foraging time along a series of similar movement efforts irrespective of forage availability at small patches. Average forage scarcity at multi-patch level increases the ratio of searching to feeding time. This results in apparent selective time allocation to richer forage areas but does not imply evidence for oriented movement at a landscape scale. We advance a behavioral-based definition of forage patches and discuss its implications in developing foraging theory and models. The P-S model applied to high-frequency position data of large herbivores substantially improves the interpretation of the factors controlling their time allocation in space with respect to previous models of herbivore spatial behavior by discriminating among behavioral-based and environmentally induced components of their movements.  相似文献   

6.
Many services generated by forest ecosystems provide essential support for human well-being. However, the vulnerability of these services to environmental change such as forest fragmentation are still poorly understood. We present spatial modeling of the generation of ecosystem services in a human-dominated landscape where forest habitat patches, protected by local taboos, are located in a matrix of cultivated land in southern Madagascar. Two ecosystem services dependent on the forest habitats were addressed: (1) crop pollination services by wild and semidomesticated bees (Apoidea), essential for local crop production of, for example, beans, and (2) seed dispersal services based on the presence of ring-tailed lemurs (Lemur catta). We studied the vulnerability of these ecosystem services to a plausible scenario of successive destruction of the smallest habitat patches. Our results indicate that, in spite of the fragmented nature of the landscape, the fraction of the landscape presently covered by both crop pollination and seed dispersal services is surprisingly high. It seems that the taboo system, though indirectly and unintentionally, contributes to upholding the generation of these services by protecting the forest patches. Both services are, however, predicted to be very vulnerable to the successive removal of small patches. For crop pollination, the rate of decrease in cover was significant even when only the smallest habitat patches were removed. The capacity for seed dispersal across the landscape displayed several thresholds with habitat patch removal. Our results suggest that, in order to maintain capacity for seed dispersal across the landscape and crop pollination cover in southern Androy, the geographical location of the remaining forest patches is more crucial than their size. We argue that in heavily fragmented production landscapes, small forest patches should increasingly be viewed as essential for maintaining ecosystem services, such as agricultural production, and also should be considered in the ongoing process of tripling the area of protected habitats in Madagascar.  相似文献   

7.
Quantifying dispersal is crucial both for understanding ecological population dynamics, and for gaining insight into factors that affect the genetic structure of populations. The role of dispersal becomes pronounced in highly fragmented landscapes inhabited by spatially structured populations. We consider a landscape consisting of a set of habitat patches surrounded by unsuitable matrix, and model dispersal by assuming that the individuals follow a random walk with parameters that may be specific to the habitat type. We allow for spatial variation in patch quality, and account for edge-mediated behavior, the latter meaning that the individuals bias their movement towards the patches when close to an edge between a patch and the matrix. We employ a diffusion approximation of the random walk model to derive analytical expressions for various characteristics of the dispersal process. For example, we derive formulae for the time that an individual is expected to spend in its current patch i, and for the time that it will spend in the matrix, both conditional on the individual hitting next a given patch j before hitting any of the other patches or dying. The analytical formulae are based on the assumptions that the landscape is infinitely large, that the patches are circularly shaped, and that the patches are small compared to interpatch distances. We evaluate the effect of these assumptions by comparing the analytical results to numerical results in a real patch network that violates all of the three assumptions. We then consider a landscape that fulfills the assumptions, and show that in this case the analytical results are in a very good agreement with the numerical results. The results obtained here allow the construction of computationally efficient dispersal models that can be used as components of metapopulation models.  相似文献   

8.
Modeling seed dispersal distances: implications for transgenic Pinus taeda.   总被引:1,自引:0,他引:1  
Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9-33.7 km. Out of 10(5) seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%.  相似文献   

9.
《Ecological modelling》2006,190(1-2):159-170
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled.We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path.  相似文献   

10.
Displacement characteristics in animals are crucial drivers of successful movement decisions in resources acquisition, migration, and dispersal. As landscape structure is modified by human activity, mobility patterns are likely to evolve in response to habitat fragmentation. In species with complex life cycles that involve obligatory migrations between different habitats, one can predict that movement propensity would be promoted by fragmentation as long as it allows to reaching a habitat patch. Here, we compare the movement characteristics of naive toadlets sampled in populations distributed over a fragmentation gradient to test the hypothesis of a positive correlation between fragmentation and mobility levels. We studied toadlet movement in experimental arenas providing small patches of suitable conditions. We recorded the use of these patches (patch behavior) or the absence of their use (overtaking behavior). The more fragmented the original landscape, the more prone the toadlets were to combine these two behaviors, thus showing a higher motivation to explore. Moreover, the more fragmented the original landscape, the less the toadlets exhibited patch behavior. As the toadlets were reared in a common environment, the behavioral differences detected, relating to the level of fragmentation, resulted from inheritance. Our results thus illustrate that fragmentation is likely to create cross-generational transmittable variations in movement characteristics.  相似文献   

11.
Weed control through crop rotation has mainly been studied in a nonspatial context. However, weed seeds are often spread beyond the crop field by a variety of vectors. For weed control to be successful, weed management should thus be evaluated at the landscape level. In this paper we assess how seed dispersal affects the interactions between crop rotation and landscape heterogeneity schemes with regard to weed control. A spatially explicit landscape model was developed to study both short- and long-term weed population dynamics under different management scenarios. We allowed for both two- and three-crop species rotations and three levels of between-field weed seed dispersal. All rotation scenarios and seed dispersal fractions were analyzed for both completely homogeneous landscapes and heterogeneous landscapes in which more than one crop was present. The potential of implementing new weed control methods was also analyzed. The model results suggest that, like crop rotation at the field level, crop rotation implemented at the landscape level has great potential to control weeds, whereby both the number of crop species and the cropping sequence within the crop rotation have significant effects on both the short- and long-term weed population densities. In the absence of seed dispersal, weed populations became extinct when the fraction of each crop in the landscape was randomized. In general, weed seed densities increased in landscapes with increasing similarity in crop proportions, but in these landscapes the level of seed dispersal affected which three-crop species rotation sequence was most efficient at controlling the weed densities. We show that ignoring seed dispersal between fields might lead to the selection of suboptimal tactics and that homogeneous crop field patches that follow a specific crop rotation sequence might be the most sustainable method of weed control. Effective weed control through crop rotation thus requires coordination between farmers with regard to cropping sequences, crop allocation across the landscape, and/ or the fraction of each crop across the landscape.  相似文献   

12.
Abstract: Determining the permeability of different types of landscape matrices to animal movement is essential for conserving populations in fragmented landscapes. We evaluated the effects of habitat patch size and matrix type on diversity, isolation, and dispersal of ithomiine butterflies in forest fragments surrounded by coffee agroecosystems in the Colombian Andes. Because ithomiines prefer a shaded understory, we expected the highest diversity and abundance in large fragments surrounded by shade coffee and the lowest in small fragments surrounded by sun coffee. We also thought shade coffee would favor butterfly dispersal and immigration into forest patches. We marked 9675 butterflies of 39 species in 12 forest patches over a year. Microclimate conditions were more similar to the forest interior in the shade‐coffee matrix than in the sun‐coffee matrix, but patch size and matrix type did not affect species richness and abundance in forest fragments. Furthermore, age structure and temporal recruitment patterns of the butterfly community were similar in all fragments, independent of patch size or matrix type. There were no differences in the numbers of butterflies flying in the matrices at two distances from the forest patch, but their behavior differed. Flight in the sun‐coffee matrix was rapid and directional, whereas butterflies in shade‐coffee matrix flew slowly. Seven out of 130 recaptured butterflies immigrated into patches in the shade‐coffee matrix, and one immigrated into a patch surrounded by sun coffee. Although the shade‐coffee matrix facilitated movement in the landscape, sun‐coffee matrix was not impermeable to butterflies. Ithomiines exhibited behavioral plasticity in habitat use and high mobility. These traits favor their persistence in heterogeneous landscapes, opening opportunities for their conservation. Understanding the dynamics and resource requirements of different organisms in rural landscapes is critical for identifying management options that address both animals’ and farmers’ needs.  相似文献   

13.
The perceptual range of an animal towards different landscape elements affects its movements through heterogeneous landscapes. However, empirical knowledge and modeling tools are lacking to assess the consequences of variation in the perceptual range for movement patterns and connectivity. In this study we tested how changes in the assumed perception of different landscape elements affect the outcomes of a connectivity model. We used an existing individual-based, spatially explicit model for the dispersal of Eurasian lynx (Lynx lynx). We systematically altered the perceptual range in which animals recognize forest fragments, water bodies or cities, as well as the probability that they respond to these landscape elements. Overall, increasing the perceptual range of the animals enhanced connectivity substantially, both qualitatively and quantitatively. An enhanced range of attraction to forests had the strongest impact, doubling immigration success; an enhanced range of attraction to rivers had a slightly lower impact; and an enhanced range of avoidance of cities had the lowest impact. Correcting the enhancement in connectivity by the abundance of each of the landscape elements in question reversed the results, indicating the potential sensitivity of connectivity models to rare landscape elements (in our case barriers such as cities). Qualitatively, the enhanced perception resulted in strong changes in movement patterns and connectivity. Furthermore, model results were highly parameter-specific and patch-specific. These results emphasize the need for further empirical research on the perceptual capabilities of different animals in different landscapes and conditions. They further indicate the usefulness of spatially explicit individual-based simulation models for recognizing consistent patterns that emerge, despite uncertainty regarding animals’ movement behavior. Altogether, this study demonstrates the need to extend the concept of ‘perceptual ranges’ beyond patch detection processes, to encompass the wide range of elements that can direct animal movements during dispersal through heterogeneous landscapes.  相似文献   

14.
Response to habitat fragmentation may not be generalized among species, in particular for plant communities with a variety of dispersal traits. Calcareous grasslands are one of the most species‐rich habitats in Central Europe, but abandonment of traditional management has caused a dramatic decline of calcareous grassland species. In the Southern Franconian Alb in Germany, reintroduction of rotational shepherding in previously abandoned grasslands has restored species diversity, and it has been suggested that sheep support seed dispersal among grasslands. We tested the effect of rotational shepherding on demographic and genetic connectivity of calcareous grassland specialist plants and whether the response of plant populations to shepherding was limited to species dispersed by animals (zoochory). Specifically, we tested competing dispersal models and source and focal patch properties to explain landscape connectivity with patch‐occupancy data of 31 species. We fitted the same connectivity models to patch occupancy and nuclear microsatellite data for the herb Dianthus carthusianorum (Carthusian pink). For 27 species, patch connectivity was explained by dispersal by rotational shepherding regardless of adaptations to zoochory, whereas population size (16% species) and patch area (0% species) of source patches were not important predictors of patch occupancy in most species. [Correction made after online publication, February 25, 2014: Population size and patch area percentages were mistakenly inverted, and have now been fixed.] Microsite diversity of focal patches significantly increased the model variance explained by patch occupancy in 90% of the species. For D. carthusianorum, patch connectivity through rotational shepherding explained both patch occupancy and population genetic diversity. Our results suggest shepherding provides dispersal for multiple plant species regardless of their dispersal adaptations and thus offers a useful approach to restore plant diversity in fragmented calcareous grasslands. Efectos del Pastoreo Rotacional sobre la Conectividad Genética y Demográfica de Plantas de Pastizales Calcáreos  相似文献   

15.
Protection from Natural Enemies in Managing Rare Plant Species   总被引:1,自引:0,他引:1  
Abstract: Natural enemies such as pathogens, herbivores, and seed predators can substantially limit the abundance of plants, including rare species. Vulnerability to particular enemies is likely to differ between life-history stages. We hypothesized that short-term protection of juvenile plants from herbivores can be used to increase population growth of rare species and thus improve the probability of long-term persistence. Using the federally listed (threatened) Pitcher's thistle ( Cirsium pitcheri ) as a model, we experimentally excluded insect herbivores from juvenile rosettes to evaluate the potential benefits of deliberate insect control as a tool for management of rare species. Herbivore effects varied spatially across the local environment. Excluding insects in portions of the habitat where herbivory was high had direct benefits, including a 53% decrease in juvenile plant mortality (60% to 7%) and a 10-fold increase in seed production of juveniles that matured and flowered. In other areas, where herbivore-induced juvenile mortality was relatively low, excluding insects either increased seed production of plants that flowered or had no major effect. Our data also suggest indirect benefits to the metapopulation via potential improvement in dispersal among patches. Temporal variation in growing conditions occurred between years, suggesting that multiple-year exclusions would be most effective. Our study suggests that small–scale manipulation of often inconspicuous interactions between rare plants and their natural enemies can be an effective, relatively low-cost tool for the management and restoration of rare plant species.  相似文献   

16.
Abstract:  The sustainability of seed extraction from natural populations has been questioned recently. Increased recruitment failure under intense seed harvesting suggests that seed extraction intensifies source limitation. Nevertheless, areas where more seeds are collected tend to also have more intense hunting of seed-dispersing animals. We studied whether such hunting, by limiting disperser activity, could cause quantitative dispersal limitation, especially for large crops and for crops in years of high seed abundance. In each of four Carapa procera (Meliaceae) populations in French Guiana and Surinam, two with hunting and two without, we compared seed fate for individual trees varying in crop size in years of high and low population-level seed abundance. Carapa seeds are a nontimber forest product and depend on dispersal by scatter-hoarding rodents for survival and seedling establishment. Hunting negatively affected the proportion of seeds dispersed and caused greater numbers of seeds to germinate or be infested by moths below parent trees, where they would likely die. Hunting of seed-dispersing animals disproportionally affected large seed crops, but we found no additional effect of population-level seed abundance on dispersal rates. Consistently lower rates of seed dispersal, especially for large seed crops, may translate to lower levels of seedling recruitment under hunting. Our results therefore suggest that the subsistence hunting that usually accompanies seed collection is at the cost of seed dispersal and may contribute to recruitment failure of these nontimber forest products. Seed extraction from natural populations may affect seedling recruitment less if accompanied by measures adequately incorporating and protecting seed dispersers.  相似文献   

17.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

18.
There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.  相似文献   

19.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   

20.
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号