首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A Xanthomonas sp. was isolated from the sludge on the drain outlet of a pharmaceutical factory. Then, the bacterium and carbon nanotubes (CNTs) were co-attached to an oxygen electrode for rapid analysis of biochemical oxygen demand (BOD). The response current was linear with BOD values in the range 10 to 300 mg/L for standard BOD solution with a response time of 35 seconds (R = 0.9994) and 20 to 580 mg/L for pharmaceutical wastewater with a response time < or =200 seconds (R = 0.9985), which means that this modified electrode might be used for online BOD analysis of pharmaceutical wastewater. Further studies revealed that the modified electrode can be used for BOD measurement in a high-salt condition. Also, the bacterium/CNTs biofilm can maintain its activity and good performance, even after being sealed and stored at 4 degrees C for 50 days.  相似文献   

2.
To enhance nitrogen removal in an existing microbial contact oxidation (MCO) system with a treatment capacity of 900 m3/d, an upflow multilayer bioreactor (UMBR) was chosen as a preanoxic reactor for the removal of organic matter and nitrate. The removal performance of the retrofitted plant was evaluated during the startup phase at a low temperature in winter. The high removal (>80%) of organic matter and suspended solids in the UMBR provided stable nitrification conditions in the MCO system, as a result of the substantial reduction in organic matter and solids loaded onto the MCO system. This treatment system showed a stable nitrogen removal efficiency of 75.3%, even in the low temperature range 7 to 10 degrees C. Phosphorus was completely removed by chemical precipitation. Production rates of excess sludge, as a function of the loads of influent flowrate and biological oxygen demand (BOD), were 0.022 kg dry solid/m3 wastewater and 0.132 kg dry solid/kg BOD.  相似文献   

3.
A series of investigations was conducted to evaluate the feasibility of using constructed treatment wetlands to remove pollutants from saline wastewater. Eight emergent plants; cattail, sedge, water grass, Asia crabgrass, salt meadow cordgrass, kallar grass, vetiver grass and Amazon, were planted in experimental plots and fed with municipal wastewater that was spiked with sodium chloride (NaCl) to simulate a saline concentration of approximately 14-16 mScm-1. All macrophytes were found tolerant under the tested conditions except Amazon and vetiver grass. Nutrient assimilation of salt tolerant species was in the range of 0.006-0.061 and 0.0002-0.0024 gm-2d-1 for nitrogen and phosphorus, respectively. Treatment performances of planted units were found to be 72.4-78.9% for BOD5, 43.2-56.0% for SS, 67.4-76.5% for NH3-N and 28.9-44.9% for TP. The most satisfactory plant growth and nitrogen assimilation were found for cattail (Typha angustifolia) though the plant growth was limited, whereas Asia crabgrass (Digitaria bicornis) was superior for BOD5 removal. Both were evaluated again in a continuous flow constructed wetland system receiving saline feed processing wastewater. A high removal rate regularly occurred in long-term operating conditions. The reduction in BOD5, SS, NH3-N and TP was in the range of 44.4-67.9%, 41.4-70.4%, 18.0-65.3% and 12.2-40.5%, respectively. Asia crabgrass often provided higher removal especially for BOD5 and SS removal. Nutrient enriched wastewater promoted flourishing growth of algae and plankton in the surface flow system, which tended to reduce treatment performance.  相似文献   

4.
Food-service establishments that use on-site wastewater treatment systems are experiencing pretreatment system and/or drain field hydraulic and/or organic overloading. This study included characterization of four wastewater parameters (five-day biochemical oxygen demand [BOD5]; total suspended solids [TSS]; food, oil, and grease [FOG]; and flow) from 28 restaurants located in Texas during June, July, and August 2002. The field sampling methodology included taking a grab sample from each restaurant for 6 consecutive days at approximately the same time each day, followed by a 2-week break, and then sampling again for another 6 consecutive days, for a total of 12 samples per restaurant and 336 total observations. The analysis indicates higher organic (BOD5) and hydraulic values for restaurants than those typically found in the literature. The design values for this study for BOD5, TSS, FOG, and flow were 1523, 664, and 197 mg/L, and 96 L/day-seat respectively, which captured over 80% of the data collected.  相似文献   

5.
Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder Gammarus fossarum was exposed to natural stream water (n = 34) and secondary treated wastewater (n = 32) for four weeks in a semi-static test system under laboratory conditions. G. fossarum exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of G. fossarum.  相似文献   

6.
The performance of an innovative membrane bioreactor (MBR) process using anoxic phosphorus uptake with nitrification and denitrification for the treatment of municipal wastewater with respect to operational performance and effluent quality is addressed in this paper. The system was operated at steady-state conditions with a synthetic acetate-based wastewater at a hydraulic retention time (HRT) of 12 hours and on degritted municipal wastewater at a total system HRT of 6 hours. The MBR system was able to achieve 99% biochemical oxygen demand (BOD), chemical oxygen demand (COD), and ammonia-nitrogen (NH4(+)-N); 98% total Kjeldahl nitrogen (TKN); and 97% phosphorus removal, producing effluent BOD, COD, NH4+-N, TKN, nitrate-nitrogen, nitrite-nitrogen, and phosphate-phosphorus of <3, 14, 0.2, 0.26, 5.8, 0.21, and <0.01 mg/L, respectively, at the 6-hour HRT. The comparison of the synthetic and municipal wastewater run is presented in this paper. Steady-state mass balance on municipal wastewater was performed to reveal some key features of the modified MBR system.  相似文献   

7.

Data reconciliation and mass balance analysis were conducted for the first time to improve the data obtained from a petrochemical wastewater treatment plant (WWTP), and the results were applied to evaluate the performance of the plant. Daily average values for 209 days from the inlet and outlet of the plant obtained from WWTP documentation center along with the results of four sampling runs in this work were used for data reconciliation and performance evaluation of the plant. Results showed that standard deviation and relative errors in the balanced data of each measurement decreased, especially for the process wastewater from 24.5 to 8.6 % for flow and 24.5 to 1.5 % for chemical oxygen demand (COD). The errors of measured data were −137 m3/day (−4.41 %) and 281 kg/day (7.92 %) for flow and COD, respectively. According to the balanced data, the removal rates of COD and 5-day biological oxygen demand (BOD5) through the aeration unit were equal to 37 and 46 %, respectively. In addition, the COD and BOD5 concentrations were reduced by about 61.9 % (2137 kg/day) and 78.1 % (1976 kg/day), respectively, prior to the biological process. At the same time, the removal rates of benzene, toluene, and styrene were 56, 38, and 69 %, respectively. The results revealed that about 40 % of influent benzene (75.5 kg/day) is emitted to the ambient air at the overhead of the equalization basin. It can be concluded that the volatilization of organic compounds is the basic mechanism for the removal of volatile organic compounds (VOCs) and it corresponds to the main part of total COD removal from the WWTP.

  相似文献   

8.
Combined wastewater collection systems continue to serve as a common urban conveyance method in urban areas of Europe and older urban areas of the United States. This study uses combined wastewater collection system monitoring data from the urbanizing Liguori catchment and channel in Cosenza (Italy) to illustrate event-based delivery and distribution of conveyed pollutant indices. Motivated by recent European Union (EU) discharge control legislation, this study specifically differentiates the event-based delivery of these indices between dry and wet-weather flows. Although the relatively steady to diurnal-variable delivery phenomena in dry weather flows are known, transport limiting phenomena for wet-weather hydrology and mass delivery typically are not known for the same catchment. Limiting categories of transport for a pollutant phase are generated by variables such as flow volume and duration, stream power, hydrograph parameters, and previous dry hours (PDH). Transport limitations of wet and dry weather events from the 414-ha catchment were analyzed and characterized as limited by mass indices (first-order, first flush transport) or limited by flow (zero-order transport). Results indicated significant concentration differences between mass- and flow-limited events. Higher concentrations were associated with mass-limited events. Frequency distributions of flow, total suspended solids (TSS), chemical oxygen demand (COD), and five-day biochemical oxygen demand (BOD5) were consistently exponential for wet-weather and mass-limited events. In contrast, flow, TSS, and BOD5 concentrations were distributed normally for flow-limited events. Results indicated a reasonable linear relationship between discharged TSS, COD, and BOD5 (biochemical oxygen demand) for Liguori Channel discharges into the Crati River. Wet-weather event transport was predominately mass-limited for TSS, COD, and BOD5.  相似文献   

9.
Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.  相似文献   

10.
The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow diversion and temporary storage to prevent process upsets.  相似文献   

11.
A two-stage membrane bioreactor was used to treat dissolved-air-flotation pretreated, high-strength pet food wastewater characterized by oil and grease concentrations of 50 000 to 82 000 mg/L and total chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5) concentrations of 100 000 and 80 000 mg/L, respectively, to meet stringent surface discharge criteria (i.e., BOD5, total suspended solids [TSS], and ammonium-nitrogen [NH4(+)-N] of < 10 mg/L at an overall hydraulic retention time of 6.3 days). Organic contaminants were removed primarily in the first stage, followed by almost complete removal of ammonia in the second stage. Despite a rise in poorly biodegradable COD in the second stage, overall removal of TSS, BOD5, COD, and ammonia was 100, 99.9, 95.2, and 99.7%, respectively, thus readily achieving the required criteria. Consistent nitrite accumulation over a period of more than 100 days, even at dissolved oxygen concentrations of more than 2.5 mg/L, was remarkable. A residual alkalinity requirement for nitrification was quantified. Membrane performance was extensively studied in this work.  相似文献   

12.

A new approach for easy synthesis of Bacillus pseudomycoides immobilized polyvinyl alcohol (PVA)/glutaraldehyde (GA) hydrogel for application in a wastewater treatment system is reported. Optimization studies revealed that GA/PVA mass ratio of 0.03 and acidic pH of 2 were required for hydrogel synthesis and eventually for bacterial cell immobilization. The synthesized crosslinked matrix possessed a pore size suitable for microbial cell entrapment while maintaining cell accessibility to external environment for bioremediation. Possible crosslinking and bacterial cell immobilization in the hydrogel were evidenced by FTIR, XRD, and SEM studies, respectively. Further, the extent of crosslinking of GA with PVA was investigated and confirmed by transmittance and permeability experiments. The viability and proliferation of hydrogel embedded cells (after 25 days) was confirmed by confocal fluorescence microscopy which also indicated that acidic pH of polymer solution did not affect the immobilized live cells. B. pseudomycoides immobilized hydrogel were demonstrated to be effective for treatment of municipal wastewater and reduced biochemical oxygen demand (BOD), chemical oxygen demand (COD), and protein content below the recommended levels. Overall, the results from this bench-scale work show that employing bacteria-embedded PVA/GA hydrogel for the treatment of municipal wastewater yield promising results which should be further explored in pilot/field-scale studies.

  相似文献   

13.
The capacity to reach lower bounds for extraction of pollutants from wastewater by four floating aquatic macrophytes--water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), salvinia (Salvinia rotundifolia), and water primroses (Ludvigia palustris)--is investigated. It is shown that the following lower bounds can be established for wastewater purification with water hyacinth: biochemical oxygen demand (BOD), 1.3 mg/L; chemical oxygen demand (COD), 11.3 mg/L; total suspended solids (TSS), 0.5 mg/L; turbidity, 0.7 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.4 mg/L. Also, the following lower bounds can be established for wastewater purification with water lettuce: BOD, 1.8 mg/L; COD, 12.5 mg/L; TSS, 0.5 mg/L; turbidity, 0.9 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.6 mg/L. These lower bounds were reached in 11- to 17-day experiments that were performed on diluted wastewater with reduced initial contents of the tested water quality indicators. As expected, water hyacinth exhibited the highest rates and levels of pollutant removal, thereby producing the best lower bounds of the water quality indicators. Given the initially low levels, BOD was further reduced by 86.3%, COD by 66.6%, ammonia by 97.8%, and phosphorus by 65.0% after 11 days of a batch experiment. The capacity of water plants to purify dilute wastewater streams opens new options for their application in the water treatment industry.  相似文献   

14.
Although the long incubation time of biochemical oxygen demand (BOD7) measurements has been addressed by the use of microbial biosensors, the resulting sensor-BOD values gained from the measurements with specific industrial wastewaters still underestimates the BOD value of such samples. This research aims to provide fast and more accurate BOD measurements in the dairy wastewater samples. Unlike municipal wastewater, wastewater from the dairy industry contains many substrates that are not easily accessible to a majority of microorganisms. Therefore, a bacterial culture, Microbacterium phyllosphaerae, isolated from dairy wastewater was used to construct a semi-specific microbial biosensor. A universal microbial biosensor based on Pseudomonas fluorescens, which has a wide substrate spectrum but is nonspecific to dairy wastewater, was used as a comparison. BOD biosensors were calibrated with OECD synthetic wastewater, and experiments with different synthetic and actual wastewater samples were carried out. Results show that the semi-specific M. phyllosphaerae-based microbial biosensor is more sensitive towards wastewaters that contain milk derivates and butter whey than the P. fluorescens-based biosensor. Although the M. phyllosphaerae biosensor underestimates the BOD7 value of actual dairy wastewaters by 25–32 %, this bacterial culture is more suitable for BOD monitoring in dairy wastewater than P. fluorescens, which underestimated the same samples by 46–61 %.  相似文献   

15.
Saeed T  Afrin R  Muyeed AA  Sun G 《Chemosphere》2012,88(9):1065-1073
This paper reports the pollutant removal performances of a hybrid wetland system in Bangladesh for the treatment of a tannery wastewater. The system consisted of three treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF) and a VF wetland. The wetlands were planted with common reed (Phragmites australis), but employed different media, including organic coco-peat, cupola slag and pea gravel. In the first stage, experimental results demonstrated significant removal of ammonia (52%), nitrate (54%), BOD (78%), and COD (56%) under high organics loading rate (690 g COD m−2 d−1); simultaneous nitrification, denitrification, and organics degradation were attributed to the unique characteristics of the coco-peat media, which allowed greater atmospheric oxygen transfer for nitrification and organic degradation, and supply of organic carbon for denitrification. The second stage HF wetland produced an average PO4 removal of 61%, primarily due to adsorption by the iron-rich cupola slag media. In the third treatment stage, which was filled with gravel media, further BOD removal (78%) from the tannery wastewater depleted organic carbon, causing the accumulation of NO3 in the wastewater. Overall, the average percentage removals of NH3-N, NO3-N, BOD, COD, and PO4 were 86%, 50%, 98%, 98% and 87%, respectively, across the whole hybrid system. The results provided a strong evidence to support widespread research and application of the constructed wetland as a low-cost, energy-efficient, wastewater treatment technology in Bangladesh.  相似文献   

16.
Abstract

A process on crystallized precipitation of ammonium by adding magnesium salt and phosphate was carried out to improve C/N ratio in swine wastewater. After completion of crystallized precipitation of ammonium, an intermittent aeration process with aeration and non‐aeration periods alternated at interval of 1:1 hr day‐1 is used for the improved swine wastewater (T‐N/BOD=0.14: BOD=8200 mg/liter and T‐N=1166 mg/liter). The results obtained from the experiment show that the removal ratios of T‐N and NH4‐N are 91% and 99%, respectively. T‐P is not removed, while the removal ratio of PO4‐P is 60% as 3% of CaCl2 liquid is added. The results also indicate that dilution with water is effective to improve the removal of phosphorus even if raw swine wastewater contains high concentrations of T‐N, T‐P, BOD, and TOC.  相似文献   

17.
A full-scale sequencing batch reactor (SBR) system was evaluated for its ability to remove carbon and nitrogen from swine wastewater. The SBR was operated on four, six-hour cycles each day, with each cycle consisting of 4.5 hours of "React," 0.75 hours of "Settling", 0.75 hours for "Draw" and "Fill." Within each cycle, an amount of wastewater equivalent to about 5% of the reactor volume (5,500 litres) was removed and added. The SBR system was able to remove 82% of biochemical oxygen demand (BOD) and more than 75% of nitrogen. Even though the SBR effluent, with an average effluent BOD5 of about 588 mg L(-1), did not meet the discharge criteria, it enabled a reduction of the land base required for land application of swine wastewater by about 75%. Results indicated that the SBR system was a viable method for the treatment of swine wastewater.  相似文献   

18.
Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can be used to obtain reliable oxygen demands in batch respirometric tests such as the HBOD test.  相似文献   

19.
The 5 days at 20 degrees C biochemical oxygen demand (BOD5) is an important parameter for monitoring organic pollution in water and assessing the biotreatability of wastewater. Moreover, BOD5 is used for wastewater treatment plant discharge consents and other water pollution control purposes. However, the traditional bioassay method for estimating the BOD5 involves the incubation of sample water for 5 days. It follows that BOD5 is not available for real-time decisionmaking and process control purposes. On the other hand, previous efforts to solve this problem by developing more rapid biosensors had limited success. This paper reports on the development of Kohonen self-organizing map (KSOM)-based software sensors for the rapid prediction of BOD5. The findings indicate that the KSOM-based BOD5 estimates were in good agreement with those measured using the conventional bioassay method. This offers significant potential for more timely intervention and cost savings during problem diagnosis in water and wastewater treatment processes.  相似文献   

20.
Ozonation of three different synthetic pharmaceutical formulation wastewater containing two human antibiotics and a veterinary antibiotic has been studied to enhance the their biodegradability. The effects of pH and initial chemical oxygen demand (COD) value as well as addition of hydrogen peroxide on ozonation process were investigated. Total organic carbon (TOC), COD, biochemical oxygen demand (BOD), and aromatic content (UV254) were the parameters followed to evaluate the performance of ozonation process. Comparison of the biodegradability of selected wastewaters containing different antibiotics confirmed that the variation of biodegradability was associated with the target compound. While BOD5/COD ratio of veterinary antibiotic formulation wastewater was increased from 0.077 to 0.38 with an applied ozone dosage of 2.96 g/l, this ratio for human antibiotic I and human antibiotic II was increased from 0 to 0.1 and 0.27 respectively. Moreover the results of this investigation showed that the ozonation process is capable of achieving high levels of COD and aromaticity removals at about their natural pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号