首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of partitioning agents were studied to determine their ability to separate organic sulfur compounds by gas chromatography. Several columns showed promise, but did not separate organic sulfur compounds from normally occurring atmospheric hydrocarbons. Higher concentrations of organic sulfur compounds in stack gases are separated as metallic salts in a series of impingers. The nature of the precipitated sulfur compound can be determined by gas chromatography after regeneration of the compound by addition of acid to the metallic precipitate.  相似文献   

2.
The transport in macroporous clayey till of bromide and 25 organic compounds typical of creosote was studied using a large intact soil column. The organic compounds represented the following groups: polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, monoaromatic hydrocarbons (BTEXs), and heterocyclic compounds containing oxygen, nitrogen or sulphur in the aromatic ring structure (NSO-compounds). The clayey till column (0.5 m in height and 0.5 m in diameter) was obtained from a depth of 1–1.5 m at an experimental site located on the island of Funen, Denmark. Sodium azide was added to the influent water of the column to prevent biodegradation of the studied organic compounds. For the first 24 days of the experiment, the flow rate was 219 ml day−1 corresponding to an infiltration rate of 0.0011 m day−1. At this flow rate, the effluent concentrations of bromide and the organic compounds increased very slowly. The transport of bromide and the organic compounds were successfully increased by increasing the flow rate to 1353 ml day−1 corresponding to 0.0069 m day−1. The experiment showed that the transport of low-molecular-weight organic compounds was not retarded relative to bromide. The high-molecular-weight organic compounds were retarded significantly. The influence of sorption on the transport of the organic compounds through the column was evaluated based on the observed breakthrough curves. The observed order in the column experiment was, with increasing retardation, the following: benzene=pyrrole=toluene=o-xylene=p-xylene=ethylbenzene=phenol=benzothiophene=benzofuran<naphthalene<1-methylpyrrole<1-methylnaphthalene=indole=o-cresol=quinoline<3,5-dimethylphenol=2,4-dimethylphenol<acridine<carbazole<2-methylquinoline<fluorene<dibenzofuran<phenanthrene=dibenzothiophene. This order could not be predicted from regularly characteristics as octanol/water-distribution coefficients of the organic compounds but only from experimentally determined data. The results indicate that a thin clayey till cover of the type described in this paper does not protect groundwater against contamination by low-molecular-weight organic compounds.  相似文献   

3.
The aim of this work was to develop a simple and fast analytical method for the determination of a wide range of organic compounds (volatile and semivolatile compounds) in municipal wastewater. The headspace-solid-phase microextraction (HS-SPME) and gas chromatography (with mass spectroscopy) was used for determination of the organic compounds. In this study, 39 organic compounds were determined, including 3 sulfur compounds, 28 substituted benzenes, and 8 substituted phenols. The extraction parameters, such as types of SPME fiber, extraction temperature, extraction time, desorption time, salt effect, and magnetic stirring, were investigated. The method had very good repeatability, because the relative standard deviations ranged from 0.5 to 12%. The detection limit of each compound was at or below the microgram-per-liter level. This method was applied for determination of the organic compounds in raw wastewater, primary effluent, secondary effluent, and chlorinated secondary effluent samples from the Chania Municipal Wastewater Treatment Plant (Crete, Greece).  相似文献   

4.
5.
The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.  相似文献   

6.
采用同时硝化反硝化对某垃圾填埋场渗滤液进行处理,并对有机物去除效果进行分析。实验结果表明,反应器对渗滤液中COD、氨氮、总氮和部分有机物具有较好的处理效果,COD、氨氮和总氮的平均去除率为82.34%、99.82%和65.31%。GC-MS分析总共检测出53种主要有机污染物,其中邻苯二甲酸二丁酯等29种有机物的去除率达100%,乙基苯等5种有机物的去除率高于90%,邻苯二甲酸二异辛酯等8种有机物的去除率介于60%和90%之间,此外还有4-苯基戊醇等5种有机物去除率低于60%。反应器内存在亚硝氮途径的脱氮反应形式。  相似文献   

7.
The physical chemical equations relating solubility to octanol water partition coefficient are presented and used to develop a new correlation between these quantities which includes a melting point (fugacity ratio) correction. The correlation is satisfactory for 45 organic compounds but it is not applicable to organic acids. When applied to very high molecular weight (> 290) compounds the correlation is less satisfactory; either it is believed because the data are inaccurate or because the tendency for these compounds to partition into organic phases is less than expected. This may have profound environmental implications.  相似文献   

8.
Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.  相似文献   

9.
A new approach is developed to predict the volatilization loss of the pure liquid and the volatilization rates of organic solutes with different Henry's law constants (H) under wind speed. The tested compounds include eight volatile organic compounds for pure liquid and the forty-one organic solutes with different H compounds are divided into three groups that span seven H orders. The wind speed is set from 0 to 6.0 ms?1. A characteristic parameter ε was established to estimate volatilization loss of pure organic compounds. The mass transfer coefficient (KOL) ratios of the organic solutes, under both wind speed and still conditions, are applied to describe the volatilization characteristics of the selected solutes. The curve profile for KOL ratios and ε values relative to the selected wind speed can be divided into two stages, the sharp-rise stage and the stable-linearity stage. The critical finding is the ε values for the different organic compounds under a specific wind speed approach a constant. The changes in the curve profile of the KOL ratios are similar to the ε values of the pure organic compounds. It is also found the relatively lower H compounds exhibit a sensitive wind effect on the KOL ratios. The KOL ratios of the relatively higher H compounds indicate a similar linear increase with the increasing wind speed in the two stages. Accordingly, concentrations of the organic compounds at the interface are thought to the primary factor. The obtained results could be a good reference to estimate volatilization loss of the organic solutes or the organic solvents under different wind speed conditions.  相似文献   

10.
Fiber filters commonly used to collect aerosols for various analyses also collect gaseous organic chemicals during sampling. These sorbed chemicals can lead to serious artifacts, particularly when analyzing aerosols for organic compounds and organic carbonaceous material. To date, this sorption process has only been looked at for a few types of filters and compound classes. This work presents a comprehensive study of this sorption process for various, widely used fiber filters and a broad variety of compound classes. Furthermore, important factors have been investigated, including relative humidity, temperature, baking and exposure to ambient air during sampling. From these data, poly-parameter linear-free energy relationships were derived that allow for estimations of sorption constants of gaseous organic compounds on different filter types. Based on the results, recommendations are provided to help predict, minimize and ensure reproducibility of artifacts caused by gaseous organic compounds sorbing to fiber filters.  相似文献   

11.
Aliphatic liquid as a basic fuel was incinerated in a laboratory scale pilot plant. Inorganic chlorine and organic chlorine mixed with basic fuel were used as additive chemicals. Sodium chloride (NaCl) and tetrachloroethylene (C2Cl4) were used as the sources of inorganic and organic chlorine. Combustion parameters were adjusted for optimum combustion and, consequently, the amount of particles in flue gases was low. The concentrations of chlorine in flue gases were high enough for possible formation reactions of organic chlorinated compounds in all of the chlorine input tests. An increase in chlorine input did not significantly increase the amounts of highly chlorinated organic compounds, like PCDD/Fs. The main result was that chlorophenol concentrations increased in parallel with organic chlorine input. Comparing organic chlorine to inorganic chlorine tests showed that more highly substituted PCDD/F congeners were formed when organic chlorine was the additive chlorine source. The formation of highly chlorinated organic compounds such as PCDD/Fs requires not only chlorine and aliphatic fuel to be formed, but some catalysts are also needed.  相似文献   

12.
Alves C  Pio C  Carvalho A  Santos C 《Chemosphere》2006,63(1):153-164
A labour-intensive analytical technique was applied to atmospheric particulate matter samples collected in a German urban/industrial influenced grassland location (Melpitz) and in a Finnish forest area (Hyyti?l?) in order to achieve a detailed chemical speciation of the organic content. The representative nature of the solvent and water-extractable fractions was determined. The organic compounds identified in the solvent extracts are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from the vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The German meadow presented the highest levels of sugars and acidic compounds in the water extracts, whilst polyols were the most abundant class in the Finnish forest. The major compounds of these classes were malic acid, mannitol, arabitol, glucose and sucrose. Levoglucosan was also found in the water extract.  相似文献   

13.
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.  相似文献   

14.
Organic matter in samples of rain and snow from Sweden, Poland, Germany and the Republic of Ireland was fractionated by employing a series of filtration, purging, evaporation and extraction steps. Determinations of the group parameter AOX (adsorbable organic halogens) in aqueous phases and EOX (extractable organic halogens) in organic phases showed that halogenated organic matter present in bulk precipitation is composed of several different groups of compounds. The largest amounts of organically bound halogens were found in fractions of relatively polar and non-volatile to semivolatile compounds. In particular, a significant part of the AOX could be attributed to alkaline-labile organic bases. Gas chromatographic analysis of different organic extracts in the chlorine channel of an atomic emission detector (AED) resulted in chromatograms with few distinct peaks, and analysis in the bromine channel did not produce any distinct peaks. Chlorinated acetic acids were the most abundant halogenated organic acids, and chlorinated alkyl phosphates were normally responsible for the largest peaks in the chlorine chromatogram of neutral, hexane-extractable compounds. When analysing volatiles, 1,4-dichlorobenzene and a thus far unidentified chloroorganic compound often caused the largest response in the chlorine channel of the AED system.  相似文献   

15.
16.
A novel approach is described for the fractionation of water-soluble organic carbon (WSOC) in atmospheric aerosols and cloud drops. The method is based on the preliminary adsorption of the sample, acidified at pH 2, on a polymeric styrene-divinylbenzene resin (XAD-2) and subsequent elution with a series of solvents, which leads to the fractionation of the sample into three classes of compounds. The method was set up using synthetic mixtures of organic compounds and then applied to selected samples of atmospheric aerosols and cloud drops. All samples and collected fractions were analysed using size exclusion chromatography (SEC). This method proved particularly useful both in providing information on the organic content of the samples and for the characterisation of the macromolecular compounds (MMCs) in the samples. Synthetic samples were prepared using humic, fulvic and tannic acid to simulate naturally occurring MMCs. In the first fraction, eluted with HCl, only the most soluble organic compounds (oxalic acid, formic acid and acetic acid) were collected. In the second fraction, eluted with methanol, the major part of the organic material was collected together with the more hydrophilic constituents of the humic substances. In the third fraction, it was possible to separately recover the more hydrophobic component of the humic substances. A large number of atmospheric samples (fog, aerosol, cloud) were then analysed using SEC. Most of these samples evidenced a noteworthy chromatogram at 254 nm. Moreover, the chromatographic area evidenced a clear linear correlation with the total organic carbon (TOC) values. The fractionation method on XAD-2 was finally applied to selected atmospheric samples, yielding three classes of organic compounds. In each sample, a non-negligible amount of compounds with dimensional and chemical properties similar to humic substances were collected in the third fraction. The carbon content in this latter fraction was estimated both by TOC and by means of the correlation between TOC and SEC area.  相似文献   

17.
Methods for the determination of biocide emissions from treated materials into water and air were developed and tested in order to support a comparative ecological assessment of biocidal products. Leaching tests, experiments with simulated rain, extraction cleaning of carpets and emission chamber tests were performed with a series of treated materials. The experiments focused on the effect of changes in the procedure as well as characteristics of the specimens and demonstrate the suitability of the proposed methods for biocides of different product types. It was demonstrated that emissions of biocides into water can be compared on the basis of leaching tests in which the emission kinetics of the active ingredients are recorded. However, the water volume per surface area and the timetable for water changes have to be defined in such tests. Functions of flux rates related to time can be well described for inorganic compounds, whereas modelling of the data is more complicated for organic substances. Emission chamber tests using 20-litre and 23-litre glass exsiccators, originally developed to study volatile organic compounds, were successfully adapted for the investigation of the emission of biocides from treated materials which are usually semi volatile organic compounds. However test parameters and the method of analysis have to be adapted to the substances to be determined. Generally, it was found that the emission curves for the semi volatile organic compounds investigated differ from those of volatile organic compounds.  相似文献   

18.
选择有代表性的芳香类有机物,在含有腐殖酸的水溶液中进行氯化试验.测定三卤甲烷和卤乙酸的生成特性.并分析有机物的化学结构对生成消毒副产物的影响.结果表明.各受试物氯化生成消毒副产物的活性和反应速率排序为间苯二酚>对苯二酚>邻苯二酚>苯酚>苯胺>苯甲酸>硝基苯;芳香类有机物苯环上官能团的性质、数量和位置等影响消毒副产物的生成;间苯二酚的氯化反应可分为快速反应阶段和慢速反应阶段.  相似文献   

19.
Wilkins K  Larsen K  Simkus M 《Chemosphere》2000,41(3):437-446
Mold species which were isolated from damp buildings were grown on sterile building materials and some synthetic media in order to study the microbial volatile organic compounds produced. Patterns of the microbial volatile organic compounds (MVOC) were very media dependent but media which favor terpene biosynthesis may give patterns unique enough for identification of dominant indoor molds.  相似文献   

20.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号