首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
施氏矿物的化学合成及其对含Cr(Ⅵ)地下水吸附修复   总被引:1,自引:0,他引:1  
采用简单快速的化学合成方法在实验室人工合成施氏矿物,研究了合成的施氏矿物对地下水中Cr(Ⅵ)的吸附动力学、吸附能力以及环境条件对施氏矿物吸附Cr(Ⅵ)的影响.结果表明,合成的施氏矿物对水溶液中Cr(Ⅵ)具有较强的吸附作用,24 h后反应达到平衡,吸附动力学过程符合Lagergren二级速率方程;而吸附等温方程符合Langmiur方程,pH值在4.5~6之间时Cr(Ⅵ)的去除效果最佳,最大吸附能力达到40.4 mg·g-1.溶液中Cr(Ⅵ)的去除率随施氏矿物投加量的增大而升高.Cl-对施氏矿物吸附地下水中Cr(Ⅵ)无明显影响,而HCO_3~-、SO_4~(2-)会对施氏矿物吸附Cr(Ⅵ)产生较为显著的抑制作用;有机物和Ca~(2+)、Mg~(2+)等无机阳离子对施氏矿物吸附Cr(Ⅵ)的影响受pH值的影响:pH=6时,有机物和无机阳离子基本对施氏矿物吸附Cr(Ⅵ)无影响;pH=8时有机物以及无机阳离子均会对施氏矿物吸附Cr(Ⅵ)产生明显的抑制作用.  相似文献   

2.
地聚合物(Geopolymer,简称GP)是由含硅铝酸盐的偏高岭土(Metakaolin,简称MK)或固体废料(如粉煤灰)经碱性激活制备的立体网状结构无机聚合物,对大部分重金属阳离子有良好的吸附作用,但对以阴离子形态存在的重金属吸附效果很差.本研究以偏高岭土为主要原料制备GP,同时用CTAB进行改性,研究其化学组成变化及对典型以阴、阳离子形态存在的重金属Cr(VI)和Cu(II)的同时吸附作用.结果表明,pH为5、吸附时间为24 h、初始浓度为50 mg·L-1、吸附剂投加量为1 g·L-1时,CTAB-GP对Cu(II)的去除率达到98.6%,Cr(VI)的最高去除率为25.6%,同时还发现溶液中Cu(II)的存在对吸附Cr(VI)有较大促进作用.整体来看,两种金属混合吸附时很好地符合二级动力学规律,单溶质吸附很好地符合Langmuir和Freundlich等温式,Cu(II)和Cr(VI)的理论最大吸附量分别为147.1 mg·g-1和63.1 mg·g-1.XRD、FTIR和BET表征分析结果表明,CTAB-GP中即使存在季铵盐阳离子,但依然属于地聚合物.CTAB-GP可以不牺牲对重金属阳离子吸附性能的同时吸附阴离子,优于常规地聚合物,鉴于CTAB-GP的这种特性,其在重金属污染防治中显示出极大的应用前景.  相似文献   

3.
硫酸盐还原菌(SRB)广泛存在于酸性矿山废水(AMD)污染的土壤中,其介导的铁矿物转化过程及其相转化产物影响着重金属的迁移 转化行为.选取土壤中的典型铁氧矿物水铁矿作为研究对象,探究了SRB (Desulfovibrio vulgaris ATCC 7757)介导水铁矿的矿相转化,分析了水铁矿相转化产物对Cr(Ⅵ)的固存能力,揭示了不同相转化阶段产物对六价铬(Cr(Ⅵ))的固存能力及作用机制.结果表明,SRB介导下矿物的相转化路径为水铁矿-马基诺矿-磁铁矿,反应过程的相转化产物对Cr(Ⅵ)的固存能力呈先增加后降低的趋势:反应第5 d水铁矿相转化的产物主要为马基诺矿,此阶段相转化矿物对Cr(Ⅵ)的固存能力达到141.06 mg·g-1,固存方式以还原作用为主;14 d时相转化矿物主要以马基诺矿和磁铁矿复合形式存在,复合产物对Cr(Ⅵ)的固存能力仅为79.59 mg·g-1,其对Cr(Ⅵ)的固存方式包括还原和吸附作用,还原和吸附对Cr(Ⅵ) 固存的贡献占比分别为78.82%和21.17%.由此可见,水铁矿相转化产物组成的差异是导致其对Cr(Ⅵ)固存能力及作用机制变化的关键因素.  相似文献   

4.
以氯甲基聚苯乙烯树脂(CMPS)为前体,经后交联反应合成超高交联树脂(J-2),再经硫脲胺基改性得到硫脲修饰超高交联聚苯乙烯树脂(TU-PS).通过BET、FTIR等对树脂结构进行表征,并考察了pH、吸附温度、接触时间等因素对TU-PS改性树脂吸附Cr(Ⅵ)性能的影响.结果表明,改性树脂(TU-PS)对Cr(Ⅵ)吸附的最佳条件为:Cr(Ⅵ)初始浓度为500 mg·L-1、初始pH值为2、树脂用量为2.5 g·L-1、吸附温度为45 ℃、吸附时间为6 h.在此最佳条件下,TU-PS树脂对Cr(Ⅵ)的最大吸附量为140.00 mg·g-1,去除率为70.18%.吸附过程符合Langmuir等温吸附模型和 准二级动力学模型,吸附过程以单分子层化学吸附为主.TU-PS树脂对Cr(Ⅵ)的吸附是静电吸附和化学吸附共同作用的结果.  相似文献   

5.
施氏矿物对水体中的重金属具有较强的吸附和固载能力,但随着环境条件的改变,施氏矿物可能会溶解并发生相转变,引起重金属的释放.利用化学合成的含Cr施氏矿物,探究其在不同Cu(Ⅱ)浓度与pH条件下含Cr施氏矿物的溶解和相转变.研究结果表明,在pH~3时,含Cr施氏矿物对Cu(Ⅱ)的吸附量较少,Cu(Ⅱ)对矿物溶解的影响不明显;在该pH条件下,含Cr施氏矿物会发生相转变生成部分针铁矿,但是随着溶液中初始Cu(Ⅱ)浓度的升高,矿物的相转变得到抑制.当pH升高至pH~5时,含铬施氏矿物对Cu(Ⅱ)的吸附量显著增加,Cu(Ⅱ)主要以Cu(OH)+与Cu2_(OH)_2~(2+)的形态吸附在含Cr施氏矿物表面,而高浓度Cu(Ⅱ)存在时也会生成部分Cu(OH)_2固体直接沉淀在矿物表面,覆盖矿物的反应位点从而阻碍SO_4~(2-)和CrO_4~(2-)的释放,而且随着Cu(Ⅱ)浓度的升高,这种抑制作用显著增强.在不同pH条件下,Cu(Ⅱ)的存在能够有效促进含Cr施氏矿物的稳定性,促进矿物对重金属Cr的固载能力,这些结果对酸性矿山废水环境中施氏矿物的稳定性和重金属污染控制具有重要意义.  相似文献   

6.
选取木棉为原材料,在不同温度下制备成生物炭.实验考察了溶液初始pH、不同热解温度及生物炭投加量对吸附效果的影响,并利用吸附动力学、吸附等温线及SEM-EDS、FTIR、XPS、Zeta电位等手段研究木棉生物炭对水溶液Cr(Ⅵ)的吸附特性及吸附机理.结果表明,热解温度为400℃,固液比为2∶1,pH=2.0时,木棉生物炭对水溶液中Cr(Ⅵ)的吸附效果最好.吸附动力学和吸附等温线结果显示,颗粒内扩散方程和Langmuir模型更能较好地拟合吸附过程.由Langmuir模型可以看出,400、550、700℃热解温度下制备的木棉生物炭对水溶液中Cr(Ⅵ)的最大吸附量分别为25.325、20.602、19.616 mg·g-1.FTIR和Zeta结果表明,木棉生物炭主要通过官能团络合和静电吸附作用去除水溶液中Cr(Ⅵ).XPS分析结果显示,生物炭表面大部分Cr(Ⅵ)被还原为Cr(Ⅲ),其中,Cr(Ⅵ)占比为26.6%,Cr(Ⅲ)占比为73.4%.研究表明,木棉生物炭作为去除水溶液中Cr(Ⅵ)的吸附剂具有较大的应用潜力.  相似文献   

7.
通过悬浮粒子浸涂法将合成的γ-Al2O3纳米粒子固载于316L多孔不锈钢表面以吸附水溶液中的Cr(VI)和Cd(Ⅱ).扫描电镜(SEM)和X射线衍射(XRD)测试结果表明,γ相的Al2O3纳米粒子均匀地涂在了316L多孔不锈钢基体上,膜体表面沉积厚度约为20 μm.该膜对单一Cr(VI)和Cd(Ⅱ)吸附的最佳pH分别为3.0~4.0和8.0~9.0,吸附均符合动力学准二级模型和Langmuir吸附等温模型,最大吸附量分别为0.603 mg·g-1和0.399 mg·g-1.本研究可为水体中的高毒性重金属Cr(VI)和Cd(Ⅱ)去除提供一定的理论和技术参考.  相似文献   

8.
生物催化合成的施氏矿物对废水中Cr(VI)的吸附   总被引:13,自引:1,他引:12       下载免费PDF全文
在模拟多种金属离子[Cr(VI),Cu2+,Zn2+和Cd2+共存的电镀废水中,采用新型生物催化合成矿物无定型羟基硫酸高铁(Schwertmannite,施氏矿物)去除废水中的Cr(VI).实验结果表明,施氏矿物对Cr(VI)络阴离子具有很强的选择性吸附,整个吸附过程符合Langmiur方程.吸附的最佳pH值为6.0~7.0,最大吸附量为55mg/g,且当Cr(VI)初始浓度≤100mg/L时,去除率达90%以上.在温度20~50℃范围内,温度变化对吸附的影响较小.一价阴离子(如Cl-和NO3-)对Cr(VI)的去除干扰极小,而仅当介质中SO42-和PO43-与Cr(VI)的摩尔比分别超过5:1和1:5时,2种无机阴离子才影响施氏矿物对Cr(VI)的吸附.  相似文献   

9.
为获得价格低廉、吸附性能优良的石墨烯基吸附剂,以氧化石墨烯(GO)、羧甲基纤维素(CMC)为基材,以聚乙烯亚胺(PEI)为改性试剂,通过化学修饰的方法制备了氨基修饰氧化石墨烯-羧甲基纤维素复合吸附剂(GO-PEI-CMC).采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)及X射线光电子能谱(XPS)等表征手段证实了CMC、氧化石墨烯与PEI已成功复合.静态吸附实验表明GO-PEI-CMC对Cr (VI)表现出良好的吸附性能,由Langmuir等温吸附模型所得最大吸附量值为243.92 mg·g-1.吸附动力学、吸附等温线研究表明GO-PEI-CMC对Cr (VI)的吸附为单分子层、化学吸附过程.GO-PEI-CMC对Cr (VI)吸附性能优良,且具有绿色环保、可生物降解的优点,是一种极具潜力的Cr (VI)吸附剂.  相似文献   

10.
以凹凸棒为载体,制备出一种热加酸改性凹凸棒负载硫化亚铁复合材料(MATP-FeS),并对其除Mo (Ⅵ)性能进行了分析.结果表明在pH=4.0和7.0的反应条件下,铁土质量比为1 ∶2合成的MATP-FeS对Mo (Ⅵ)的去除率分别为76.96%和54.60%,而未改性FeS对Mo (Ⅵ)的去除率分别为23.79%和13.28%.MATP-FeS对Mo (Ⅵ)的吸附过程符合准二级动力学模型.Langmuir模型和Temkin模型能较好地描述吸附等温过程,且由Langmuir模型计算得到在318 K下MATP-FeS对Mo (Ⅵ)的饱和吸附容量为16.86 mg·g-1.Mo (Ⅵ)去除率在pH为2.0~3.0时达到最大值(95.25%);氮气、空气和纯氧条件下MATP-FeS对Mo (Ⅵ)的去除率分别为77.58%、83.97%和83.96%;MATP-FeS在老化60 d后对水中10 mg·L-1的Mo (Ⅵ)仍有70.53%的去除率,远高于未改性的FeS (14.97%).X射线光电子能谱(XPS)分析结果表明,反应后MATP-FeS表面Mo均以正六价形态存在,结合反应过程模型得出,Mo (Ⅵ)去除机制主要是表面吸附作用.  相似文献   

11.
采用巯基捕收剂稳定化处理垃圾焚烧飞灰中的重金属   总被引:1,自引:0,他引:1  
研究了3种巯基捕收剂,二乙基二硫代氨基甲酸钠(乙硫氮)、乙基黄原酸钾(乙基黄药)和二丁基二硫代磷酰铵(丁铵黑药),对垃圾焚烧飞灰中重金属的稳定化效果.3种巯基捕收剂的用量均为62.5 μmol·g-1飞灰.扫描电镜观察发现,飞灰经稳定化处理后,巯基捕收剂均匀地覆盖于飞灰晶体表面,使矿物晶体棱角变得模糊.利用酸浸提程序(TCLP法)和水浸提程序(水平振荡法)评价飞灰中重金属Cu、Pb、Cd、Cr和Zn的浸出毒性.在0.1 mol·L-1醋酸浸提条件下,与Na2S相比,巯基捕收剂对Cu和Pb的稳定化效果较好,其中乙硫氮对Cu的稳定化比率接近100%,丁铵黑药对Pb的稳定化比率达到69.2%;在水浸提条件下,乙硫氮、乙基黄药和丁铵黑药对5种重金属的稳定化比率分别为72.6%、73.5%和76.8%,显著高于Na2S处理(52.4%). 3种巯基捕收剂对5种重金属亲和力的强弱顺序大致为Cu>Pb>Cr>Cd>Zn,并且超过60%的巯基捕收剂与酸可浸提重金属离子发生了螯合沉淀反应.重金属-巯基捕收剂絮凝物在中性和碱性条件下(pH>6)比较稳定,在酸性条件下(pH<6)可发生部分溶解.为获得较好的重金属稳定化效果,维持稳定化飞灰的高酸缓冲容量十分重要.  相似文献   

12.
为了明确不同构型富氮生物炭对重金属的作用机理,本研究以玉米秸秆为生物质,通过尿素改性结合高温热解制备了3种不同氮构型的富氮生物炭(以吡咯氮为主的Pr-NBC、吡啶氮为主的Pd-NBC和石墨氮为主的Gp-NBC),考察其对典型重金属的作用行为.吸附动力学和吸附等温线等实验结果显示:富氮生物炭对Pb (II)和Cr (VI)的吸附均以化学吸附为主,且存在明显的差异;对Pb (II)的吸附容量与溶液离子强度成正比,吸附可能以形成内层络合物为主,对Cr (VI)的作用则包含吸附和还原两个过程;对两种重金属的吸附容量受pH影响较大,静电吸引作用可能是主要驱动力.吸附前后的材料表征显示:富氮生物炭主要通过静电吸引作用、阳离子交换、沉淀作用和阳离子-π键作用吸附Pb (II),通过静电吸引作用吸附Cr (VI),同时能将Cr (VI)还原为Cr (III).不同构型氮与重金属作用机理存在差异,其中,石墨氮主要通过与Pb (II)形成阳离子-π键作用促进吸附,吡咯氮和吡啶氮具有还原性,可将Cr (VI)转化为Cr (III),实现减毒.因此,在考察自然环境中富氮生物炭对重金属的作用机制时,应当充分考虑氮构型的影响.  相似文献   

13.
柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究   总被引:1,自引:0,他引:1  
施氏矿物(Schwertmannite)是酸性矿区废水污染环境中典型的铁硫酸盐次生矿物,由于其较好的吸附能力成为矿区多种重金属的沉积库.环境中同时广泛存在着各种有机质,易与矿物结合形成有机质矿物复合体,从而影响矿物对重金属的吸附行为.目前关于有机质与施氏矿物形成的复合体对重金属的吸附研究相对较少.因此,本研究选取柠檬酸作为天然有机质的代表,研究不同环境条件下柠檬酸施氏矿物复合体对重金属Cd、Pb的吸附.结果表明,复合体保持着施氏矿物基本的矿物学特征,对重金属Cd和Pb的吸附行为表现出不同的趋势:复合体对Cd的吸附量整体上随着Cd浓度和pH值的升高而上升;相反,复合体对Pb的吸附量均比纯施氏矿物要低,并且随着柠檬酸含量的升高吸附量下降越明显;体系中共存的硫酸根离子(SO42-)抑制了复合体对Cd的吸附,而对Pb的吸附则起到促进作用.XRD分析表明柠檬酸抑制了高pH下Pb在矿物表面形成PbSO4沉淀.FTIR红外谱图进一步证明结合在复合体上的柠檬酸参与了对Cd和Pb的吸附过程.本研究结果有助于更好地预测Cd和Pb在矿区的迁移和归宿.  相似文献   

14.
不溶性腐殖酸对六价铬离子的吸附研究   总被引:3,自引:0,他引:3  
研究了不溶性腐殖酸(IHA)对六价铬(Cr(Ⅵ))的吸附作用及反应接触时间、pH、IHA投加量、温度等对吸附作用的影响,确定了最佳反应条件。实验表明,在反应接触时间60min、酸性pH7左右的水溶液条件下,IHA对Cr(Ⅵ)去除率可达98%。绘制了IHA对Cr(Ⅵ)的反应动力学曲线和吸附等温线。  相似文献   

15.
采用原位沉积技术将Fe(Ⅲ)负载于铜绿假单胞菌(Pseudomonas aeruginosa,简称Pa)表面制备了Fe(Ⅲ)与细菌的复合体(Fe-Pa),研究了Fe-Pa对水溶液中Cr(VI)的吸附特性,探讨了最佳合成条件、Fe-Pa投加量、溶液pH值、时间和Cr(VI)初始浓度等因素对Cr(VI)吸附效果的影响,同时利用SEM、FT-IR、XPS和Zeta电位对Fe-Pa进行表征分析.吸附实验结果显示,Fe(Ⅲ)浓度为600 mg·L-1、细菌投加量为0.5 g·L-1制备的Fe-Pa效果最佳;Fe-Pa去除Cr(VI)适宜于酸性条件进行;Fe-Pa对Cr(VI)的吸附速率较快,60 min内可达到吸附平衡,为自发的吸热吸附,且符合准二级动力学和Langmuir等温模型.表征结果表明,Fe(Ⅲ)成功地负载到铜绿假单胞菌上,为吸附Cr(VI)提供更多的活性位点,主要机制为静电吸附作用、络合作用和还原作用.经过4次吸附/再生后,Fe-Pa对Cr(VI)的吸附能力仍在72%以上,表明Fe-Pa具有较好的重复使用性.  相似文献   

16.
氨基改性生物炭负载纳米零价铁去除水中Cr(VI)   总被引:7,自引:3,他引:4  
以聚乙烯亚胺(PEI)为功能单体,玉米秸秆生物炭为载体,制备了氨基改性生物炭负载型纳米零价铁(nZVI@PEI-HBC),并利用扫描电镜(SEM)、红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对材料进行了表征,分析了溶液pH、温度、材料投加量等因素对其去除Cr(VI)的影响及其去除机理.结果表明:在投加量为0.5 g·L-1,温度为20℃,pH值为5,Cr(VI)初始浓度为20 mg·L-1条件下,各材料对Cr(VI)的去除率大小为nZVI@PEI-HBC > nZVI > PEI-HBC > HBC.SEM显示nZVI颗粒较均匀地分散在生物炭表面,FTIR分析表明PEI改性后材料表面增加了氨基等重金属配位基团,这可能是nZVI@PEI-HBC去除Cr(VI)效果更好的原因.影响因素研究表明,材料具有较好稳定性,老化28 d后其Cr(VI)去除性能变化不大;酸性环境、升温、增大材料投加量均有利于nZVI@PEI-HBC对Cr(VI)的去除.机理研究发现,水中溶解氧加速了nZVI的腐蚀和Fe(II)的释放,促进Cr(VI)还原为Cr(III),然后通过共沉淀作用和氨基等基团的吸附作用被去除.  相似文献   

17.
本研究考察了Acidithiobacillus ferrooxidansA.ferrooxidans)联合高硫煤矸石(富含FeS2)对模拟煤矿酸性水体中Cr(VI)的去除效果.结果表明,处理Cr(VI)初始浓度为50mg/L的模拟煤矿酸性废水(pH=2.5)时,投配率为6.67~33.33g/L高硫煤矸石可使Cr(VI)去除达到良好效果.50mg/LCr(VI)在24h内即可完全被高硫煤矸石中的FeS2还原成Cr(III),且在反应终点时(120h),6.67,13.33,33.33g/L高硫煤矸石对还原产物Cr(III)的吸附去除率分别为7.1%、20.2%、29.1%.然而,在高硫煤矸石的还原和吸附作用下,大部分的Cr仍以Cr(III)形式残留在酸性水体中,且高硫煤矸石的大量投加也给水体带来了Fe2+、Fe3+、SO42-等二次污染物.在高硫煤矸石-Cr(VI)体系中引入A.ferrooxidans和9K培养基后,A.ferrooxidans介导的Fe2+生物氧化及产物Fe3+水解矿化过程可促进部分Fe2+、Fe3+、SO42-等向次生铁矿物(包括施氏矿物和黄钾铁矾)转变,从而使模拟酸性水体中残留的Cr(III)通过次生铁矿物的吸附或共沉淀作用被清除.在A.ferrooxidans强化作用下,模拟煤矿酸性废水中Cr(VI)在96h即可达到99.4%的去除率.  相似文献   

18.
基于老化对纳米零价铁(NZVI)去除水中Cr(VI)的不利影响,本研究考察了接种嗜水气单胞菌(Aeromonas hydrophila)强化老化NZVI对水中Cr(VI)的去除,并分析了溶解氧、温度、pH、Cr(VI)初始浓度对其去除Cr(VI)的影响,同时利用扫描电镜(SEM)、X射线光电子能谱(XPS)等分析了反应前后材料的形貌特征及Cr的价态变化.结果表明,接种嗜水气单胞菌能显著提高无氧条件下老化NZVI对Cr(VI)的去除效果,且在酸性条件和30~40 ℃条件下去除效果较好,可能是因为该条件下更有利于老化NZVI的腐蚀和微生物的生长,此外,Cr(VI)去除效率随Cr(VI)初始浓度升高而降低.在pH=6,温度为30 ℃,老化nZVI投加量为0.1 g·L-1,Cr(VI)初始浓度为50 mg·L-1的条件下反应24 h后,Cr(VI)的去除率可达到100%.XPS分析表明,反应后NZVI表面沉积的Cr主要以Cr(III)的形式存在,可能为Cr(OH)3沉淀或FexCr1-x(OH)3共沉淀物.动力学研究发现,Cr(VI)去除过程符合准二级动力学,去除机制为Cr(VI)的吸附、还原与共沉淀,其中以还原作用为主.  相似文献   

19.
李靖  范明杰  刘翔  李淼 《环境科学学报》2019,39(10):3402-3409
为解决纳米级零价铁(nZVI)在环境中易团聚、易氧化的问题,强化其去除水中Cr(VI)的能力,选择非离子型表面活性剂聚乙烯吡咯烷酮(PVP)和阴离子表面活性剂油酸钠(NaOA)同时对nZVI进行修饰.同时,通过对比不同pH值、材料干湿状态、初始浓度及共存离子条件下的反应效果,结合材料的XRD和XPS表征、动力学实验和25℃等温线的拟合进行机理分析.结果表明:酸性条件有利于Cr(VI)的去除;材料的干湿状态对去除效率影响较大;材料去除水中Cr(VI)可在3 h内达到反应平衡,去除效率在90%以上,实验条件下最大去除量为183.1 mg·g-1,反应过程符合准二级动力学模型及Langmuir模型;反应过程中Cr(VI)大部分转化为Cr(Ⅲ).  相似文献   

20.
本研究以微米零价铁(ZVI)为核心,对ZVI进行硫化改性和海藻酸钠(SA)负载,成功制备一种高效去除Cr(Ⅵ)的功能性材料(SZVI-SA).考察了材料制备过程中螯合剂种类、质量分数、S/Fe等参数对Cr(Ⅵ)去除的影响.采用SEM-EDS、TEM、XRD和XPS等对材料进行表征分析,讨论去除机制.实验结果表明,选择7%的Fe3+为海藻酸钠螯合剂,S/Fe=3.5、干燥温度70℃作为材料制备的较优条件;SZVI-SA对Cr(Ⅵ)的去除过程符合准二级动力学模型,吸附速率主要受Cr(Ⅵ)与SZVI-SA结合位点之间的化学反应速率控制.表征结果表明,SZVI-SA有效成分为FeS,比表面积较大为97.83 m2·g-1,以微孔为主,孔隙较多.SZVI-SA对Cr(Ⅵ)的还原去除率可达92%,同时能有效地去除反应后溶液中的Cr(Ⅲ)和Fe(Ⅲ).SZVI-SA与Cr(Ⅵ)的反应机制主要为氧化还原反应,主要还原活性物质为Fe2+、S2-和S22-;反应后生成的Fe(Ⅲ)和Cr(Ⅲ)最终以Fe(OH)3、Cr(OH)3和Cr2O3的形式沉淀分离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号