首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

2.
Qiu RL  Zhao X  Tang YT  Yu FM  Hu PJ 《Chemosphere》2008,74(1):6-12
A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

3.
4.

In this study, farmland and mining ecotypes of Solanum photeinocarpum (a potential cadmium (Cd) hyperaccumulator plant) were reciprocally hybridized each other, and the Cd accumulation characteristics of the F1 hybrids were studied. In pot experiments, higher biomasses and Cd extraction abilities were found for two S. photeinocarpum F1 hybrids than for the parents, but the Cd contents in various organs were lower in the hybrids than the parents. However, the differences between the Cd contents in the two hybrids were not significant. The antioxidant enzyme (superoxide dismutase and peroxidase) activities were higher for the S. photeinocarpum F1 hybrids than the parents. Less DNA methylation was found in the hybrids than the parents because more demethylation occurred in the hybrids than the parents. The biomass, Cd content, and Cd extraction ability effects in field experiments were similar to the effects in the pot experiments. It was concluded that reciprocally hybridizing different S. photeinocarpum ecotypes improved the ability of S. photeinocarpum to be used to phytoremediate contaminated land.

  相似文献   

5.

This study was carried out to evaluate the effects of dietary supplementation of aqueous extract of Withania somnifera (W. somnifera) against cadmium chloride–induced toxicity in the Nile tilapia, Oreochromis niloticus. Five experimental groups were designed: group (I) was free from cadmium chloride and W. somnifera and served as a control, group (II) was exposed to 1.775 mg L?1 of cadmium chloride only (which is equivalent to 1/4 96-h LC50), while groups (III), (IV), and (V) were exposed to 1.775 mg cadmium chloride L?1 with co-supplementation of dietary W. somnifera in doses of 1.0, 2.0, and 3.0 mL kg?1 body weight (bwt), respectively. The experiment lasted for 4 weeks. In the second and fourth weeks of the experiment, the following indicators were evaluated: hematological (hemogram and blood protein profile), biochemical (activities of serum liver enzymes, namely alanine transaminase (ALT) and aspartate transaminase (AST)), immunological (immunoglobulin M (IgM), serum lysozyme), and tissue antioxidant changes (malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD)). Additionally, gene expressions of glutathione-S-transferase (GST) in the liver were assessed. At the end of the experiment, all fish in all groups were experimentally challenged with Aeromonas hydrophila and the relative protection survival (RPS) was demonstrated. The results revealed that groups exposed to cadmium chloride toxicity and co-supplemented with dietary aqueous extract of W. somnifera at high doses showed significant ameliorative effects in hemogram parameters, total protein, globulin, IgM, and lysozyme against cadmium chloride–induced toxicity compared to the control group and the group exposed to a sublethal dose of cadmium chloride without co-suplemntation of W. somnifera. The results showed also that groups supplemented orally with W. somnifera at high doses have higher antioxidant activities of CAT and SOD and reduction of MDA formation. Levels of gene expressions of GST in the liver were higher in W. somnifera extract-supplemented groups more than those in the group exposed to cadmium chloride–induced toxicity without W. somnifera supplementation. In addition, the results revealed improved RPS with the dietary supply of W. somnifera extract in high doses. In conclusion, this study showed that the dietary supplementation of W. somnifera extract to diets of O. niloticus could be suggested as an effective way to overcome cadmium chloride–induced toxicity because it improves blood parameters and antioxidants, and it can be used as an immunostimulant against the invading bacterial pathogens.

  相似文献   

6.
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata.  相似文献   

7.
The role of exogenous spermine (0.25 mM Spm, a type of polyamine (PA) in reducing Cd uptake and alleviating Cd toxicity (containing 1 and 1.5 mM CdCl2 in the growing media) effects was studied in the mung bean (Vigna radiata L. cv. BARI Mung-2) plant. Exogenously applied Spm reduced Cd content, accumulation, and translocation in different plant parts. Increasing phytochelatin content, exogenous Spm reduced Cd accumulation and translocation. Spm application reduced the Cd-induced oxidative damage which was reflected from the reduction of H2O2 content, O2 ?– generation rate, lipoxygenase (LOX) activity, and lipid peroxidation level and also reflected from the reduction of spots of H2O2 and O2 ?– from mung bean leaves (compared to control treatment). Spm pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, and glutathione, GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which reduced oxidative stress. The cytotoxicity of methylglyoxal (MG) is also reduced by exogenous Spm because it enhanced glyoxalase system enzymes and components. Through osmoregulation, Spm maintained a better water status of Cd-affected mung bean seedlings. Spm prevented the chl damage and increased its content. Exogenous Spm also modulated the endogenous free PAs level which might have the roles in improving physiological processes including antioxidant capacity, osmoregulation, and Cd and MG detoxification capacity. The overall Spm-induced tolerance of mung bean seedlings to Cd toxicity was reflected through improved growth of mung bean seedlings.  相似文献   

8.
Chloramphenicol (CA) is a largely used antibiotic and it is an inhibitor of protein synthesis that also induces ROS production. In this work there were investigated activities and expressions in the Adriatic bivalve Chamelea gallina of some antioxidant and detoxification proteins like superoxide dismutase (Mn-SOD, Cu/Zn-SOD), catalase (CAT) and Cytochrome P450 (CYP1A). Clams exposed to 5mgl(-1) of chloramphenicol were sampled 2, 4 and 8 days after treatment (CA2, CA4 and CA8). SODs, CAT, and CYP1A activity and/or expression were detected in pooled digestive glands by Western blotting and by spectrophotometrical analysis. Enzymes activities increase during the entire antibiotic exposure. With respect to the control Cu/Zn-SOD expression increases, while Mn-SOD expression decreases significantly after 4 days. Two CYP1A immunopositive-proteins (57.7 and 59.8kDa) were detected. The lower band significantly decreases in CA8, the upper one also in CA4 condition. High levels of Mn-SOD, CAT activity and Cu/Zn-SOD expression, indicate intense ROS production while Mn-SOD expression inhibition might be ascribable to mitochondrial alterations due to CA and indirectly to ROS. CYP1A1 action determines H(2)O(2) production that would contribute to a CYP1A1 gene promoter down regulation, a response to oxidative stress with the antioxidant enzymes activation as a final result. This study highlights the close association, in C. gallina, in presence of chloramphenicol, between SOD/CAT and CYP system, and it appear particularly interesting to the lack of similar researches on mollusc species.  相似文献   

9.
Cadmium, like many other pollutants, is nondegradable and can be accumulated by Lymantria dispar at a level that affects fitness components, physiology, and development, which could indicate presence of environment pollution by heavy metals. The cadmium effect on fitness-related traits in the third, fourth, fifth, and sixth instar of L. dispar L. was determined. Furthermore, activities of the following antioxidative defense components after the larvae had been fed on the artificial cadmium-supplemented diet (50 μg Cd/g dry food) were assessed: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), total glutathione amount (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and the amount of free sulfhydryl (SH) groups. Statistically significant delay of development in the fourth, fifth, and sixth instar and decrease of the larval mass in the third and fourth instar were estimated after the exposure to cadmium through food in comparison to the control. There were no changes in SOD activity of cadmium-treated larvae. Significantly lower CAT, APOX, and GR activities were recorded in the third, fifth, and in the third instar, respectively. At the same time, higher activity was recorded in the sixth instar, while GST activity was higher in the third. GSH content was significantly lower during all instars after treatment but the amount of SH groups was higher in older larvae. The strategy of antioxidative defense and the adjustment or modulation of fitness-related traits in presence of cadmium was dependent on the age of larvae in L. dispar, which might be used in early metal risk assessment in Lepidoptera and other insects.  相似文献   

10.
11.
The effects of heavy metals on wild mammals are often assessed by analysing residues in body organs. This paper reviews published studies to determine whether cadmium (Cd), lead (Pb) and fluoride (F) residues in small mammals can be predicted directly from residues in soil or, when this is not possible, from residues in other species. It was found that residues in soil could be used to predict Cd and Pb concentrations in small mammals. There were significant (P < 0.05) relationships between Cd residues in soil and in the liver and kidneys of wood mice Apodemus sylvaticus and common shrews Sorex araneus; similar relationships occurred in field voles Microtus agrestis (0.05 < P < 0.10). There were also significant relationships between Pb residues in soil and body organs for wood mice and field voles. Insufficient data were available to relate either Pb levels in soil to those in shrews or F levels in soil to residues in any species. However, both Cd and F residues in any one of the three small mammal species examined could be predicted from the corresponding residues in the other species, there being significant relationships between species for residues in the liver and kidneys (Cd) or bone (F). Too few data were available to determine species-species relationships for Pb.  相似文献   

12.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

13.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

14.
The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to cadmium (Cd) were investigated. Cd accumulated very rapidly in the cells and this accumulation was directly correlated with an increase in applied CdCl(2) concentration in the external medium. At 0.05mM CdCl(2), growth was stimulated, but at 0.5mM CdCl(2), the growth rate was reduced. An alteration in activated oxygen metabolism was detected by visual analysis as well as by an increase in lipid peroxidation at the higher CdCl(2) concentration. Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) and superoxide dismutase (SOD; EC 1.15.1.1) activity increased, particularly at the higher concentration of CdCl(2). Ascorbate peroxidase (APX; EC 1.11.1.11) activity was increased at the lower CdCl(2) concentration used, but could not be detected in cells growing in the higher CdCl(2) concentration after 24h of growth, whilst guaiacol peroxidase (GOPX; EC 1.11.1.7) did not show a clear response to Cd treatment. An analysis by non-denaturing PAGE followed by staining for enzyme activity, revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differently affected by CdCl(2) treatment and one GR isoenzyme was shown to specifically respond to CdCl(2). The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress. The main response appears to be via the induction of SOD and CAT activities for the removal of reactive oxygen species (ROS), and by the induction of GR to ensure the availability of reduced glutathione for the synthesis of Cd-binding peptides, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.  相似文献   

15.
Li F  Ji L  Luo Y  Oh K 《Chemosphere》2007,67(1):13-19
With Carassius auratus, one of the main economic fish species in Eastern China as test material, this paper studied the hydroxyl radical generation and oxidative stress in its liver under the effect of 2,4,6-trichlorophenol (2,4,6-TCP). Different doses of 2,4,6-TCP were injected intraperitoneally into the fishes, and the Electron paramagnetic resonance (EPR) spectra of hepatic free radicals, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST), levels of reduced glutathione (GSH) and oxidized glutathione (GSSG), and malondialdehyde (MDA) contents were determined 24h after injection. The results showed that under the effects of 2,4,6-TCP, the generation of free radical that was considered to be hydroxyl radical increased significantly, the activities of antioxidant enzymes decreased, with CAT most strongly affected and followed by SOD and GST, the GSH level decreased significantly while GSSG level had little difference, resulting in a decreased GSH/GSSG ratio, and the MDA content increased significantly. All the test parameters showed that C. auratus was subjected to oxidative stress and damage when exposed to 2,4,6-TCP.  相似文献   

16.
This study was undertaken to determine the redox balance in the developing brain after exposure to acrylamide (ACR), a potent neurotoxin. The studies were performed using an in ovo chick embryo model. The antioxidant enzymes SOD, GPx, CAT, and reduced glutathione (GSH) were used as indicators of the redox balance. Eggs were injected with ACR doses of 40 mg kg?1 egg mass (2.4 mg egg?1) on embryonic day 17 (E17). The activity of the antioxidant enzymes and the concentration of GSH were measured at E17, E18, and E19 in the medulla oblongata, cerebrum, cerebellum, and optic lobe. The results indicated a significant decrease in the GSH concentrations in the optic lobe (E19, E20) and cerebrum (E20) of embryos exposed to ACR. The activities of SOD and GPx were significantly increased in the majority of the examined structures after injection of ACR. CAT activity was completely inhibited in the brains of the embryos exposed to ACR compared to that in the brains of the control embryos. Thus, we concluded that ACR exerts a significant influence on the redox balance in the developing brain by impacting the activity of antioxidant enzymes and the levels of GSH.  相似文献   

17.
Wu H  Zhang R  Liu J  Guo Y  Ma E 《Chemosphere》2011,83(4):599-604
The study was undertaken to evaluate the effects of malathion and chlorpyrifos on acetylcholinesterase (AChE), esterase (EST) activity and antioxidant system after topical application with different concentration to Oxya chinensis. The results showed that malathion and chlorpyrifos inhibited EST, AChE activity and increased malondialdehyde (MDA) contents. A change in superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activity combined with reduced glutathione (GSH) and total glutathione (tGSH) contents was found in O. chinensis after malathion and chlorpyrifos treatments. Malathion and chlorpyrifos increased SOD and CAT activity compared with the control. With the concentrations increasing, SOD and CAT activity showed the similar tendency, namely, SOD and CAT activity increased at the lower concentrations and decreased at the higher concentrations. The results showed that malathion and chlorpyrifos decreased significantly GR activity. GST and GPx activity at the studied concentrations of chlorpyrifos was lower than that of the control. However, no significance was observed. GPx and GST activity in malathion treated grasshoppers showed a biphasic response with an initial increase followed by a decline in its activity. Malathion and chlorpyrifos decreased GSH contents and the ratio of GSH/GSSG. The present findings indicated that the toxicity of malathion and chlorpyrifos might be associated with oxidative stress.  相似文献   

18.
Kim JH  Wang SY  Kim IC  Ki JS  Raisuddin S  Lee JS  Han KN 《Chemosphere》2008,71(7):1251-1259
We report here the full-length cDNA sequence of metallothionein (MT) gene from an anadromous river pufferfish, Takifugu obscurus (order: Tetradotiformes; family: Tetradontidae). Phylogenetic relationship analysis revealed that the identified MT has high sequence similarity with many Perciformes fish species. The tissue distribution and concentration- and time-dependent expression of MT mRNA were studied in fish exposed to cadmium. Liver showed the highest level of MT gene expression followed by other tissues (brain, gill and kidney) in response to cadmium exposure. Muscle showed a weak expression response of MT gene. Time-course study revealed highest early phase (at 6h) expression in the brain and late persistence of induction in the intestine. MT mRNA expression showed a concentration-dependent expression in all the tissues. However, induction in brain and liver occurred at much lower concentrations as compared to other tissues. Our results demonstrate that MT in T. obscurus is induced by cadmium exposure which indicates that it plays a functionally conserved function of metal detoxification.  相似文献   

19.
Lei W  Wang L  Liu D  Xu T  Luo J 《Chemosphere》2011,84(5):689-694
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7 d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L−1 Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L−1 on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3 d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.  相似文献   

20.
Blue mussels (Mytilus edulis) were exposed to an extract made of natural cyanobacterial mixture containing toxic cyanobacterium Nodularia spumigena (70-110 microg nodularin l(-1), 24-h exposure followed by 144-h depuration period in clean water). Toxin concentration increased from initial 400 to 1100 mg kg(-1) after 24-h exposure, measured by liquid chromatography/mass spectrometry (LC/MS). Acetylcholinesterase activity (AChE), a biomarker of direct neurotoxic effects, showed inhibition after 12 and 24h exposure but returned to control level during the depuration period. Catalase (CAT) activity, an indicator of oxidative stress, showed significantly elevated levels in exposed mussels but only 72 h after the end of the exposure. No change in the activity of glutathione-S-transferase (GST) involved in conjugation reactions could be observed. A gradual yet incomplete elimination of nodularin (from 1100 to 600 mg kg(-1)) was observed during the depuration period, and the tissue levels were 30% lower in clean water after 24 h. The observed increase in oxidative stress indicated by elevated CAT activity is likely connected to detoxification reactions leading to the production of reactive oxygen species, including an apparent time lag in this specific enzymatic defence response. That no change in GST activity was observed suggests that this enzyme is not significantly involved in the detoxification process of nodularin-containing cyanobacterial extract in M. edulis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号