共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs. 相似文献
2.
Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented. 相似文献
3.
The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5 % of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78 % between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed. 相似文献
4.
To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60–110 °C for 10–60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 °C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 °C. The information from the present study will contribute to the microbial risk control of food waste–amended animal feed, to cope with legislation on food or feed safety. Implications: Reduction of microbial indicators at ramping time and holding time during the hydrothermal process showed that hydrothermal treatment is an effective method to achieve hygienic feed from food waste to a certain extent, but the conditions researched in this study were not enough for the complete sterilization of food waste, because of the different heat resistance of bacteria and spores. 相似文献
5.
Safe and sufficient quantity of water is necessary for a healthy growth of human beings. The gap between water demand and available water supply is increasing day by day. Proper sanitation, especially decentralized approach, can solve the problem of water supply and wastewater management and that can be done by reuse of greywater. Typically, from a household, greywater (GW) flow is around 65 % of the total wastewater flow. Further light greywater is around 50 % of the total GW. Hence, GW has a high potential for recycle and reuse. The aim of this article is to reveal the present state of art in GW treatment and to identify the further scope for research. Present article contains a review on per capita GW generation, GW characteristics, and its treatment. Around 22 treatment systems comprising different treatment processes are discussed in detail for removal efficiency of pollutants, effluent concentrations and their compliance with wastewater reuse guidelines and standards. Constructed wetland and filtration were found efficient in the removal of most of the reuse parameters compared to other technologies. Anaerobic followed by aerobic system with post-disinfection unit may be a sustainable option for GW treatment for reuse. There is a need to develop the technologies for GW treatment at household level to increase the reuse practises at grass root level. Further, there is need of development of flow diagram with different technologies by targeting the type of reuse (flushing, gardening, agriculture, etc.). 相似文献
6.
Environmental Science and Pollution Research - The persistence of many micropollutants in water and wastewater is of great concern to the contemporary scientific community. Several types of... 相似文献
7.
Environmental Science and Pollution Research - Several industries release varying concentration of dye-laden effluent with substantial negative consequences for any receiving environmental... 相似文献
8.
Water pollution with pathogenic microorganisms is one of the serious threats to human health, particularly in developing countries. The main objective of this article is to highlight microbial contamination of drinking water, the major factors responsible for microbial contamination, and the resulting health problems in Pakistan. Furthermore, this study will be helpful for researchers and administrative agencies to initiate relevant studies and develop new policies to protect further deterioration of water supply with pathogenic microbes and ensure clean and safe drinking water to the public in Pakistan. In Pakistan, water at the source, in the distribution network, and at the consumer tap is heavily polluted with coliforms and fecal coliforms all over the country. An overview of more than 7,000 water samples reviewed here reveals that an average of over 71 and 58 % samples in the country was contaminated with total coliforms and fecal coliforms, respectively. Drinking water contamination accounts for 20 to 40 % of all diseases in the country, which causes national income losses of Rs 25–58 billion annually (US$0.25–0.58 billion, approximately 0.6–1.44 % of the country’s GDP). Improper disposal of industrial and municipal wastes is the most important factor responsible for water pollution in the country followed by cross-contamination due to old and leaking pipes and lack of water filtration and disinfection facilities. There is an urgent need for emergency steps to stop further deterioration of water quality and improve the existing water quality so as to protect the public from widespread waterborne diseases. 相似文献
9.
Water scarcity is being recognized as a present and future threat to human activity and as a consequence water purification technologies are gaining major attention worldwide. Nanotechnology has many successful applications in different fields but recently its application for water and wastewater treatment has emerged as a fast-developing, promising area. This review highlights the recent advances on the development of nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater that are contaminated by toxic metals, organic and inorganic compounds, bacteria and viruses. In addition, the toxic potential of engineered nanomaterials for human health and the environment will also be discussed. 相似文献
10.
Water treatment residuals (WTRs) produced in large quantities during deironing and demanganization of infiltration water, due to high content of iron and manganese oxides, exhibit excellent sorptive properties toward arsenate and arsenite. Nonetheless, since they consist of microparticles, their practical use as an adsorbent is limited by difficulties with separation from treated solutions. The aim of this study was entrapment of chemically pretreated WTR into calcium alginate polymer and examination of sorptive properties of the obtained composite sorbent toward As(III) and As(V). Different products were formed varying in WTR content as well as in density of alginate matrix. In order to determine the key parameters of the adsorption process, both equilibrium and kinetic studies were conducted. The best properties were exhibited by a sorbent containing 5 % residuals, formed in alginate solution with a concentration of 1 %. In slightly acidic conditions (pH 4.5), its maximum sorption capacity was 3.4 and 2.9 mg g ?1 for As(III) and As(V), respectively. At neutral pH, the adsorption effectiveness decreased to 3.3 mg As g ?1 for arsenites and to 0.7 mg As g ?1 for arsenates. The presence of carboxylic groups in polymer chains impeded in neutral conditions the diffusion of anions into sorbent beads; therefore, the main rate-limiting step of the adsorption, mainly in the case of arsenates, was intraparticle diffusion. The optimal condition for simultaneous removal of arsenates and arsenites from water by means of the obtained composite sorbent is slightly acidic pH, ensuring similar adsorption effectiveness for both arsenic species. 相似文献
11.
The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation (“high energy”) processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology’s strong points and operational conditions are described, and a discussion on the possible future of this technology follows. 相似文献
13.
A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage. 相似文献
14.
Environmental Science and Pollution Research - Generation of solid wastes due to industrialization and urbanization results in dumping of wastes in landfills causing contamination of soil, air, and... 相似文献
15.
Environmental Science and Pollution Research - A solar pond is a simple system that collects and stores heat for thermal and electrical applications. Heat storage and heat extraction are the key... 相似文献
16.
Environmental Science and Pollution Research - The disposal of dye-contaminated wastewater is a major concern around the world for which a variety of techniques are used for its treatment. The... 相似文献
17.
Environmental Science and Pollution Research - Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy.... 相似文献
18.
The textile industry, as recognized conformist and stake industry in the world’s economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based “classical/conventional” treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future. 相似文献
19.
Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques—mechanical treatments used to recover valuable metals, including copper—are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible. 相似文献
|