首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

2.
Biomass burning smoke constituents are worthy of concern due to its influence on climate and human health. The organic constituents and distributions of molecular tracers emitted from burning smoke of six natural vegetations including monsoon evergreen broad-leaf trees and shrubs in South China were determined in this study. The gas and particle samples were collected and analyzed by gas chromatography–mass spectrometry. The major organic components in these smoke samples are methoxyphenols from lignin and saccharides from cellulose. Polycyclic aromatic hydrocarbons (PAHs) are also present as minor constituents. Furanose, pyranose and their dianhydrides are the first reported in the biomass burning smoke. Some unique biomarkers were detected in this study which may be useful as specific tracers. The corresponding tracer/OC ratios are used as indicators for the two types of biomass burning. U/R (1.06–1.72) in the smoke samples may be used as parameters to distinguish broad-leaf trees and shrubs from fossil fuel. Other useful diagnostic ratios such as methylphenanthrene to phenanthrene (MPhe/Phe), phenanthrene to phenanthrene plus anthracene (Phe/(Phe + Ant)) and fluoranthene to fluoranthene plus pyrene (Flu/(Flu + Pyr)) and octadecenoic acid/OC are also identified in this study. These results are useful in efforts to better understand the emission characterization of biomass burning in South China and the contribution of regional biomass burning to global climate change.  相似文献   

3.
Levoglucosan (L), mannosan (M), galactosan (G) and other cellulose and lignin markers from burn tests of Miocene lignites of Poland were determined by gas chromatography–mass spectrometry (GC–MS) to assess their distributions and concentrations in the smoke. Their distributions were compared to those in the pyrolysis products of the lignites. Levoglucosan and other anhydrosaccharides are products from the thermal degradation of cellulose and hemicellulose and are commonly used as tracers for wood smoke in the atmosphere. Here we report emission factors of levoglucosan in smoke particulate matter from burning of lignite varying from 713 to 2154 mg kg?1, which are similar to those from burning of extant plant biomass. Solvent extracts of the lignites revealed trace concentrations of native levoglucosan (0.52–3.7 mg kg?1), while pyrolysis yielded much higher levels (1.6–3.5 × 104 mg kg?1), indicating that essentially all levoglucosan in particulate matter of lignite smoke is derived from cellulose degradation. The results demonstrate that burning of lignites is an additional input of levoglucosan to the atmosphere in regions where brown coal is utilized as a domestic fuel. Interestingly, galactosan, another tracer from biomass burning, is not emitted in lignite smoke and mannosan is emitted at relatively low concentrations, ranging from 7.8 to 70.5 mg kg?1. Thus, we propose L/M and L/(M + G) ratios as discriminators between products from combustion of lignites and extant biomass. In addition, other compounds, such as shonanin, belonging to lignans, and some saccharides, e.g., α- and β-glucose and cellobiose, are reported for the first time in extracts of bulk lignites and of smoke particulate matter from burning these lignites.  相似文献   

4.
The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.  相似文献   

5.
Gaseous and particulate samples from the smoke from prescribed burnings of a shrub-dominated forest with some pine trees in Lousã Mountain, Portugal, in May 2008, have been collected. From the gas phase Fourier transform infrared (FTIR) measurements, an average modified combustion efficiency of 0.99 was obtained, suggesting a very strong predominance of flaming combustion. Gaseous compounds whose emissions are promoted in fresh plumes and during the flaming burning phase, such as CO2, acetylene and propene, produced emission factors higher than those proposed for savannah and tropical forest fires. Emission factors of species that are favoured by the smouldering phase (e.g. CO and CH4) were below the values reported in the literature for biomass burning in other ecosystems. The chemical composition of fine (PM2.5) and coarse (PM2.5–10) particles was achieved using ion chromatography (water-soluble ions), instrumental neutron activation analysis (trace elements) and a thermal–optical transmission technique (organic carbon and elemental carbon). Approximately 50% of the particulate mass was carbonaceous in nature with a clear dominance of organic carbon. The organic carbon-to-elemental carbon ratios up to 300, or even higher, measured in the present study largely exceeded those reported for fires in savannah and tropical forests. More than 30 trace elements and ions have been determined in smoke aerosols, representing in total an average contribution of about 7% to the PM10 mass.  相似文献   

6.
The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.  相似文献   

7.
An overview of the application of organic geochemistry to the analysis of organic matter on aerosol particles is presented here. This organic matter is analyzed as solvent extractable bitumen/ lipids by gas chromatography-mass spectrometry. The organic geochemical approach assesses the origin, the environmental history and the nature of secondary products of organic matter by using the data derived from specific molecular analyses. Evaluations of production and fluxes, with cross-correlations can thus be made by the application of the same separation and analytical procedures to samples from point source emissions and the ambient atmosphere. This will be illustrated here with typical examples from the ambient atmosphere (aerosol particles) and from emissions of biomass burning (smoke). Organic matter in aerosols is derived from two major sources and is admixed depending on the geographic relief of the air shed. These sources are biogenic detritus (e.g., plant wax, microbes, etc.) and anthropogenic particle emissions (e.g., oils, soot, synthetics, etc.). Both biogenic detritus and some of the anthropogenic particle emissions contain organic materials which have unique and distinguishable compound distribution patterns (C14-C40). Microbial and vascular plant lipids are the dominant biogenic residues and petroleum hydrocarbons, with lesser amounts of the pyrogenic polynuclear aromatic hydrocarbons (PAH) and synthetics (e.g., chlorinated compounds), are the major anthropogenic residues. Biomass combustion is another important primary source of particles injected into the global atmosphere. It contributes many trace substances which are reactants in atmospheric chemistry and soot paniculate matter with adsorbed biomarker compounds, most of which are unknown chemical structures. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular tracers are generally still source specific. Retene has been utilized as a tracer for conifer smoke in urban aerosols, but is not always detectable. Dehydroabietic acid is generally more concentrated in the atmosphere from the same emission sources. Degradation products from biopolymers (e.g., levoglucosan from cellulose) are also excellent tracers. An overview of the biomarker compositions of biomass smoke types is presented here. Defining additional tracers of thermally-altered and directly-emitted natural products in smoke aids the assessment of the organic matter type and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry can be applied successfully to provide tracers for studying the chemistry and dispersion of ambient aerosols and smoke plumes. Presented at the 6th FECS Conference on Chemistry and the Environment, Atmospheric Chemistry and Air Pollution, August 26–28, 1998, Copenhagen.  相似文献   

8.
The large-scale air pollution episode due to the out-of-control biomass burning for agricultural purposes in Indonesia started in June 1997, has become a severe environmental problem for itself and the neighboring countries. The fire lasted for almost five months. Its impact on the health and ecology in the affected areas is expected to be substantial, costly and possibly long lasting. Air pollution Index as high as 839 has been reported in Malaysia. API is calculated based on the five pollutants: NO2, SO2, O3, CO, and respirable suspended particulates (PM10). It ranges in value from 0 to 500. An index above 101 is considered to be unhealthy and a value over 201 is very unhealthy (Abidin and Shin, 1996).The solvent-extractable organic compounds from four total suspended particulate (TSP) high-volume samples collected in Kuala Lumpur, Malaysia (Stations Pudu and SIRIM) were subjected to characterization – the abundance was determined and biomarkers were identified. Two of the samples were from early September when the fire was less intense, while the other two were from late September when Kuala Lumpur experienced very heavy smoke coverage which could be easily observed from NOAA/AVHRR satellite images. The samples contained mainly aliphatic hydrocarbons such as n-alkanes and triterpanes, alkanoic acids, alkanols, and polycyclic aromatic hydrocarbons. The difference between the early and late September samples was very significant. The total yield increased from 0.6 to 24.3 μg m-3 at Pudu and 1.9 to 20.1 μg m-3 at SIRIM, with increases in concentration in every class. The higher input of vascular plant wax components in the late September samples, when the fire was more intense, was characterized by the distribution patterns of the homologous series n-alkanes, n-alkanoic acids, and n-alkanols, e.g., lower U : R, higher >C22/<C20 for n-alkanoic acids, higher >C20/<C20 for n-alkanols, a shift in Cmax from C16 to C26 for n-alkanoic acids and C18 to C28 for n-alkanols, and the presence of abundant moretane (17β(H), 21α(H)-hopanes). The biomarkers dehydroabietic acid and retene were not found in the samples suggesting there is a difference in the long-distance transport samples of an Asian forest fire and the controlled experiments reported in the literature. Similar to the biomass burning in Amazonia (Abas et al., 1995), the present study also showed an absence of conifer tracers in the smoke aerosols indicating tropical wood sources. Abundant friedelin, a specific biomarker for smoke from oak wood fires (Standley and Simoneit, 1990), was present in the late September samples when the fire was more intense. The results were compared to literature values from an earlier study of the haze episode on 29 September 1991 in Kuala Lumpur, Malaysia (Abas and Simoneit, 1996).  相似文献   

9.
Particulate samples of agricultural waste burning, straw burning, forest leaf burning, heavy duty truck emission, paved road dust, soil, agricultural soil, coal, electrostatic precipitator ash, and emission from stack power plant were collected from the Mae Moh area. Chemical compositions of sampling filters were analysed to determine the particulate matter source profiles. The analysis included ICP-MS for elemental compositions, ion chromatography for water soluble ions and CHNS/O for carbon species. In all biomass burning profiles organic carbon (OC) was higher during smouldering phase, while elemental carbon (EC) was higher during flaming phase. Results relating to biomass emission during flaming stage showed increase in K+. Organic and elemental carbons were the most abundant in biomass burning and truck exhaust. The abundance of EC was much lower, and the abundance of OC was much higher in biomass burning relative to truck exhaust emission. Al, K, Mg, Ca, and Fe were presented with high abundance in road dust, soil, coal, fly ash and stack samples. The differences in chemical compositions were not sufficient to distinguish geological material and fugitive dust sources. Fly ash profile differed from the others since OC and EC were not detected. Na and Zn were most abundant in stack samples. These findings served as a starting point for source contribution study. For future application of source apportionment using the CMB modelling technique, these source profiles should be appropriately grouped and selected to generate reliable outcomes.  相似文献   

10.
Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21–23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m3) as compared to that during the non-smoke haze period (27.0 μg/m3). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.  相似文献   

11.
The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0–16.8% and 4.0–19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.  相似文献   

12.
Fine (PM2.5) and coarse (PM2.5–10) smoke particles from controlled biomass burnings of a shrub-dominated forest in Lousã Mountain, Portugal, enabled the quantification by chromatographic techniques of several molecular tracers for the combustion of Mediterranean forest ecosystems, which could be conducive to source apportionment studies. The major organic components in the smoke samples were pyrolysates of vegetation cuticles, mainly comprising steradienes and sterol derivatives, carbohydrates from the breakdown of cellulose, aliphatic lipids from vegetation waxes and methoxyphenols from the lignin thermal degradation. Most of these compounds are chiefly found in fine particles. Polycyclic aromatic hydrocarbons (PAH) were also present as minor constituents. Anhydrosugar and PAH molecular diagnostic ratios were applied as source assignment tools. Some biomarkers are reported for the first time in biomass burning smoke.  相似文献   

13.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

14.
The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event.

Implications: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.  相似文献   


15.
In February and March 2000, several uncontrolled forest and grassland fires occurred in the municipalities of Campana and Zarate (100 km north of Buenos Aires, Argentina). The biomass burning emitted a large amount of smoke particulates, which caused dense fog and visibility impairment in the nearby area. From 18 to 19 March, the smoke was transported towards the Buenos Aires Metropolitan Area (BAMA), resulting in a prolonged reduction of visibility. This feature was supported by a build-up of the Aerosol Optical Thickness (AOT) and deposited particulate matter mass observed in BAMA. This paper examines the prevailing meteorological situation that produced the smoke transport towards BAMA. An anticyclone, displaced easterly over the interest area by a frontal low-pressure system, produced low-level ventilation conditions that favoured the transport and the smoke persistence in BAMA. The transport of particles and the behaviour of their normalised concentrations were simulated adequately by a regional dispersion model.  相似文献   

16.
In 1997, the U.S. Environmental Protection Agency (EPA) revised its particulate matter standards to include an annual standard for fine particulate matter (PM2.5; 15 microg/m3) and a 24-hr standard (65 microg/m3). The 24-hr standard was lowered to 35 microg/m3 in 2006 in an effort to further reduce overall ambient PM2.5 concentrations. Identifying and quantifying sources of particulate matter affecting a particular location through source apportionment methods is now an important component of the information available to decision makers when evaluating the new standards. This literature compilation summarizes a subset of the source apportionment research and general findings on fine particulate matter in the eastern half of the United States using Positive Matrix Factorization. The results between studies are generally comparable when comparable datasets are used; however, methodologies vary considerably. Commonly identified source categories include: secondary sulfate/coal burning (sometimes over 50% of total mass), secondary organic carbon/mobile sources, crustal sources, biomass burning, nitrate, various industrial processes, and sea salt. The source apportionment tools and methodologies have passed the proof-of-concept stage and are now being used to understand the ambient composition of particulate matter for sites across the United States and the spatial relationship of sources to the receptor. Recommendations are made for further and standardized method development for source apportionment studies, and specific research areas of interest for the eastern United States are proposed.  相似文献   

17.
Using organic compounds as tracers, a chemical mass balance model was employed to investigate the relationship between the mutagenicity of the urban organic aerosol sources and the mutagenicity of the atmospheric samples. The fine particle organic mass concentration present in the 1993 annual average Los Angeles-area composite sample was apportioned among eight emission source types. The largest source contributions to fine particulate organic compound mass concentration were identified as smoke from meat cooking, diesel-powered vehicle exhaust, wood smoke, and paved road dust. However, the largest source contributions to the mutagenicity of the atmospheric sample were natural gas combustion and diesel-powered vehicles. In both the human cell and bacterial assay systems, the combined mutagenicity of the composite of primary source effluents predicted to be present in the atmosphere was statistically indistinguishable from the mutagenicity of the actual atmospheric sample composite. Known primary emissions sources appear to be capable of emitting mutagenic organic matter to the urban atmosphere in amounts sufficient to account for the observed mutagenicity of the ambient samples. The error bounds on this analysis, however, are wide enough to admit to the possible importance of additional mutagenic organics that are formed by atmospheric reaction (e.g., 2-nitrofluoranthene has been identified as an important human cell mutagen in the atmospheric composite studied here, accounting for approximately 1% of the total sample mutagenic potency).  相似文献   

18.
The U.S. Environmental Protection Agency (EPA) currently classifies Imperial County, CA, as a nonattainment area for PM10 (particulate matter [PM] < or = 10 microm in diameter), and this region suffers from high rates of chronic bronchitis and childhood asthma. Although high annual and daily average PM levels can have negative health and economic effects, recent studies have identified an association between adverse health effects and short-term PM spikes of tens of micrograms per cubic meter. This study identified PM episodes in Calexico/Mexicali that involve PM concentration spikes with concentrations up to 10 times greater than those reported to cause adverse health effects. These episodes appear to be relatively common during the winter months, are associated with wind speeds below 2 m/sec and stable boundary level heights below 500 m, and can comprise a large portion of the 24-hr PM levels. The organic composition of the PM10 samples collected during the low-wind/ high-PM episodes differed from that collected at other times. However, a preliminary source attribution identified only one significant difference between the source classes: agricultural burning accounted for 6.7% of organic-fraction PM10 for low-wind/high-PM episodes versus 0.25% at other times. This preliminary source attribution also revealed that motor vehicles were the most important relative contributor to organic PM10.  相似文献   

19.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.  相似文献   

20.
To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30–50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30–50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号