首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The diatom Cylindrotheca closterium was exposed to transient light- and osmotic conditions as occur during its tidal emersion. The objective was to analyze how this simulated emersion contributes to the production of active oxygen species (AOS) and via this, to oxidative cell damage. Light- and salinity conditions were varied in factorial combination: low light (no UVB) or high light (unweighted UVB-dose rates of respectively 0.01; 0.07; 0.24; 1.03 W m−2) at normal (30 psu) or high salinity (60 psu). UVB (0.01–0.24 W m−2) and high salinity had a significant, negative effect on the photosynthetic efficiencies ΔF/F m’ (steady-state quantum yield) and F v/F m (maximum yield). UVB at 1.03 W m−2 (15 kJ m−2 d−1) almost arrested electron transport. At ecologically relevant UVB levels, i.e. below 0.24 W m−2 (≈3.4 kJ m−2 d−1) with UVB:PAR<0.4:100 (PAR photosynthetically active radiation) only dynamic photoinhibition was observed (protection via heat dissipation). Non-photochemical quenching was positively correlated with the de-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT). A decreasing ratio DT/(DD+DT) after 4 h of UVB at >0.07 W m−2 and at 60 psu indicated a reversal of the diatom xanthophyll cycle (diminished photoprotection) which may be caused by an enhanced AOS production. Oxidative stress and -damage to C. closterium cells were assessed applying fluorescent indicator dyes, via confocal microscopy and quantitative image analysis. AOS production rates (cellular DCF fluorescence) were stimulated by UV, and were ~50% higher at 60 psu. AOS production decreased with an increasing pre-exposure (0–4 h) to normal UVB (0.24 W m−2), which indicated a stimulation of the antioxidative defence. Non-protein thiols (indicator CMF) and glutathione pools (HPLC-analyzed) decreased with UVB-dose rates (0.01–0.24 W m−2), most likely due to AOS-mediated thiol oxidation. Hypersalinity (60 psu) and UVB (0.01–0.24 W m−2) caused membrane depolarization (dye DIBAC4(3)) and phospholipid hydrolysis (phospholipase A2 dye: bis-BODIPY FL-C11-PC). AOS production may have diminished the membrane polarity, and peroxidized the membrane lipids (HPLC-analyzed malondialdehyde) which enhanced PLA2 activity. The dyes indicated an increased oxidative (lipid) damage at a 15% inhibition of photosynthesis in this diatom, at UVB levels and salinities that can be expected in situ during its periodic tidal emersion.  相似文献   

2.
 Effects of nutrient treatments on photoacclimation of the hermatypic coral Stylophora pistillata (Esper) were studied. Studies on photoacclimation of colonies from different light regimes in the field were evaluated and used to design laboratory experiments. Coral colonies were collected in the Gulf of Eilat (Israel) from January to March 1993. Exterior branches of colonies from different depths (1 to 40 m) displayed different trends in production characteristics at reduced and very low levels of illumination. From 24 ± 3% to 12 ± 2% of incident surface photosynthetic active radiation (PARo), zooxanthella population density and chlorophyll a+c per 106 zooxanthellae increased, a trend seen in the range of light levels optimal for coral growth (90 to 30% PARo). The P max of CO2 per 106 zooxanthellae decreased, while P max of CO2 per 103 polyps increased, indicating an increase in zooxanthella population density at low light levels. Proliferous zooxanthella frequency (PZF, a measure of zooxanthella division) declined significantly at light levels <18 ± 3% PARo. At the lowest levels of illumination (<5% PARo), zooxanthella population density decreased, as did the PZF; chl a+c per 106 zooxanthellae was unchanged. In 28-d experiments, exterior coral branches from the upper surfaces of colonies from 3 m depth (65 ± 4% PARo) were incubated in aquaria under bright (80 to 90% PARo), reduced (20 to 30% PARo), and extremely low (2 to 4% PARo) light intensities. At each light intensity, the corals were maintained in three feeding treatments: sea water (SW); ammonium enriched SW (SW + N); SW with Artemia salina nauplii (SW + A). An increase in P max of CO2 per 103 polyps was found in corals acclimated to reduced light (20 to 30% PARo) in nutrient-enriched SW, while in SW, where the increase in zooxanthella population density was smaller, it did not occur. Nutrient enrichments (SW + N at 2 to 4% PARo and SW + A at 20 to 30% PARo) increased zooxanthella population density, but had no effect on chl a+c per 106 zooxanthellae. Acclimation for 14 d to reduced (10 to 20% PARo) and extremely low (1 to 3% PARo) light intensities shifted 14C photoassimilation into glycerol and other compounds (probably glycerides), rather than sugars. Both ammonium addition and feeding with Artemia salina nauplii resulted in an increase in photosynthetic assimilation of 14C into amino acids. We conclude that acclimation to reduced light consists of two processes: an increase in photosynthetic pigments and in zooxanthella population density. Both processes require nitrogen, the increase in zooxanthella population density needing more; this adaptation is therefore limited in nitrogen-poor sea water. Received: 19 June 1998 / Accepted: 13 June 2000  相似文献   

3.
Experiments were performed to determine how ultraviolet radiation (UVR) in the environmentally relevant range affects development of the sea urchin Strongylocentrotus droebachiensis (Müller) and whether mycosporine-like amino acids (MAAs), present in the early life stages, reduce UV-induced damage. Eggs, embryos, and larvae contained five MAAs having absorption maxima ranging from 320 to 334 nm. Eggs contained principally shinorine and porphyra-334, which absorb maximally at 334 nm and half-maximally at 312 and 348 nm, spanning much of the environmental range of biologically effective UVR. Concentrations of MAAs remained constant in unirradiated embryos through the gastrula stage, but decreased significantly in two-armed pluteus larvae. Daily exposure to combined photosynthetically active radiation (PAR, 400–700 nm) and UVR did not affect the concentration of MAAs in these embryos up to the two-armed pluteus stage. Prism larvae of sea urchins and the sand dollar Echinarachnius parma (Lamarck) did not accumulate shinorine from the surrounding seawater. Daily exposure of embryos to UVA (320–400 nm) and UVB (295–320 nm) radiation in the presence of PAR induced delays and abnormalities during development, and removing UVB eliminated this effect. Abnormalities in embryos included thickening of the blastoderm wall, filling of the blastocoel by abnormal cells, exogastrulation, and formation of abnormal spicules. The percentage of embryos that developed normally was lower in batches of embryos exposed to PAR + UVA + UVB, except in embryos from urchins maintained on MAA-rich diets. In all cases, the percentage of PAR + UVA + UVB-exposed embryos that developed normally was positively related to the concentration of MAAs in eggs from which the embryos developed. Thus, the MAAs found in S. droebachiensis embryos protect them against UVB-induced abnormalities during their development to at least the four-armed pluteus larval stage. Received: 8 May 2000 / Accepted: 29 September 2000  相似文献   

4.
On the roofs of subtidal crevices, the giant cuttlefish (Sepia apama) of southern Australia lays clutches of lemon-shaped eggs which hatch after 3 to 5 mo. Diffusion of oxygen through the capsule and chorion membrane to the perivitelline fluid and embryo was modelled using the equation O2 = G O2(P O2outP O2in), where O2 = rate of oxygen consumption, G O2 = oxygen conductance of the capsule, and P O2 values = oxygen partial pressures across the capsule. During development, O2 rose exponentially as the embryo grew, reaching 5.5 μl h−1 at hatching. Throughout development, the capsule dimensions enlarged by absorption of water into the perivitelline space, increasing G O2 by a combination of increasing surface area, and decreasing thickness of the capsule. These processes maintained P O2in high enough to allow unrestricted O2 until shortly before hatching. Diffusion limitation of respiration in hatching-stage embryos was demonstrated by (1) increased embryonic O2 when P O2out was experimentally raised, (2) greater O2 of resting individuals immediately after hatching, and (3) reduced O2 of hatchlings at experimental P O2 levels higher than P O2in before hatching. Thus, low P O2in may be the stimulus to hatch. Potential problems of diffusive gas-exchange are mitigated by the relatively low incubation temperature (12 °C), which may be a factor limiting the distribution of the species to cool, southern waters. Received: 14 August 1999 / Accepted: 24 January 2000  相似文献   

5.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

6.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

7.
The benthic crustacean Saduria entomon occurs frequently in deeper parts of the Gulf of Gdańsk. It is one of a few species able to survive oxygen deficiencies in its natural environment. The anaerobic heat production of S. entomon during 40 h of anoxia was determined. Additionally, the effects of size, sex and activity of the organism on its heat production were investigated. Average heat production of S. entomon was 0.25 ± 0.16 mJ g−1 wet wt s−1 (n=55, avg. length 39 ± 6 mm). The amount of heat produced decreased with increasing body size. The heat production of S. entomon males was greater than that of females ( p<0.05). Specimens kept in chambers with glass beads and water were less active and had lower metabolic rates than those placed in chambers containing water only (more active). During 40 h of anoxia S. entomon gradually decreased its heat production to 5–16% of aerobic level, demonstrating the high adaptation of this species to changeable oxygen conditions in the Baltic Sea. Received: 31 July 1997 / Accepted: 21 January 1998  相似文献   

8.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

9.
Eggs and embryos of the sea urchin Paracentrotus lividus were used as a model to study the effect at the cellular level of potential anti-mitotic compounds extracted from the diatom Thalassiosira rotula. Eggs and embryos incubated in a water-soluble diatom extract, corresponding to 5 × 106 and 107 cells ml−1, were totally blocked (i.e. cell division was blocked) at the one-cell stage. At lower concentrations (2.5 and 1.25 × 106 cells ml−1), the first mitotic division was inhibited in 32 ± 26% and 25 ± 3.5% of the zygotes, respectively, demonstrating the dose-dependent effect of diatom extracts on sea urchin development. Immunofluorescence dyes, specific for DNA and α-tubulin subunits, were used to stain nuclei and microtubules in sea urchin embryos during various phases of development. Images with the confocal laser scanning microscope showed that tubulin was not organised in filaments at the sperm aster and cortex levels, and that the pronuclei were not fused in embryos incubated soon after fertilisation with water-soluble diatom extracts corresponding to 107 cells ml−1. At lower diatom-extract concentrations (4 × 106 cells ml −1), fusion of the pronuclei occurred but the mitotic spindle was not formed. Microtubules were clearly de-polymerised and the chromatin appeared globular and compacted at the centre of the cell. A similar structure was observed for sea urchin embryos incubated with 0.1 mM colchicine, a potent anti-mitotic compound. When sea urchin embryos were incubated in water-soluble diatom extracts at different times prior to the first mitotic division, microtubules appeared de-polymerised at each step, from pronuclear fusion to telophase, and cell division was blocked. At the histological level, embryos incubated with 4 × 106 cells ml−1 diatom extract showed nuclear fragmentation without cytokinesis. The possible use of sea urchin embryos as a bioassay to test for other unknown compounds with cytotoxic activity in phytoplankton species is discussed. Received: 7 May 1998 / Accepted: 9 December 1998  相似文献   

10.
Profiles of diarrhetic shellfish poisoning (DSP) toxins produced throughout the growth cycle and the cell cycle of the toxigenic marine dinoflagellate Prorocentrum lima were studied in triplicate unialgal batch cultures. Cells were pre-conditioned at 18 ± 1 °C, under a photon flux density (PFD) of 90 ± 5 μmol m−2 s−1 on a 14 h light:10 h dark photoperiod. In exponential growth phase, cultures were synchronized in darkness for 17 d. After dark synchronization, cultures were transferred back to the original photoperiod regime. Cells were harvested for DSP toxin analysis by LC-MS (liquid chromatography with mass spectrometry), and double-stranded (nuclear) DNA was quantified by flow cytometry. The cell populations became asynchronous within approximately 3 d after transition from darkness to the 14 h light:10 h dark photoperiod. This may be due to the prolonged division cycle (5 to 7 d) that is not tightly phased by the photoperiod. Unlike other planktonic Prorocentrum spp., cytokinesis in P. lima occurred early in the dark and ceased by “midnight”. Cellular levels of the four principal DSP toxins, okadaic acid (OA), OA C8-diol-ester (OA-D8), dinophysistoxin-1 (DTX1) and dinophysistoxin-4 (DTX4), ranged from 0.37 to 6.6, 0.02 to 1.5, 0.04 to 2.6, and 1.8 to 7.8 fmol cell−1, respectively. No toxin production was evident during the extended period of dark synchronization nor during the initial period when NH4 was consumed as the major nitrogen source. Soon after the cells were returned to the 14 h light:10 h dark cycle and they began to take up NO3, cellular levels of all four toxins gradually increased. This increase in DSP toxins usually occurred in the light, marked by a rise in DTX4 levels that preceded an increase in the cellular concentration of OA and DTX1 (delayed by 3 to 6 h). Thus, DTX4 synthesis is initiated in the G1 phase of the cell cycle and persists into S phase (“morning” of the photoperiod), whereas OA and DTX1 production occurs later during S and G2 phases (“afternoon”). No toxin production was measured during cytokinesis, which happened early in the dark. The evidence indicates that toxin synthesis is restricted to the light period and is coupled to cell cycle events. Received: 3 September 1998 / Accepted: 30 March 1999  相似文献   

11.
 Early development of the Antarctic sea urchin Sterechinus neumayeri was examined under two differ-ent culture regimes: one to simulate development near-bottom (“demersal development”) and the other to simulate the development of embryos in the water column (“pelagic development”). When embryos of both treatments reached the hatching blastula stage at 5 d post-fertilization (−1.5 °C), the blastulae that had undergone demersal development evidenced significant differences (by ANOVA or suitable non-parametric comparison) in the following: a thicker blastoderm layer (12%, P < 0.001), higher ash-free dry weights (19%, P < 0.01), lower mass-specific respiration rates (50%, P < 0.001), higher incorporation rates of 35S-methionine into protein (23%, P < 0.003), and a differential pattern of protein synthesis. When embryos developed demersally, they remained in the jelly-coat material released with the eggs at spawning. Quantitative isolation of this jelly-coat material in S. neumayeri demonstrated that it contained a significant amount of organic matter, 115 ng ash-free dry mass per egg, equivalent to 17% of the egg's initial organic mass. Uptake of external nutrients during embryogenesis may be a significant component of the physiological energetics of this polar invertebrate by allowing the utilization of jelly-coat material released by a female during spawning. Received: 21 April 1999 / Accepted: 5 June 2000  相似文献   

12.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

13.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

14.
Intertidal organisms exposed to thermal stress normally experience other stresses simultaneously, but how these combined stresses modify tolerance to heat, especially for embryos, is poorly understood. Tolerance of fucoid algal embryos to heat, with and without acclimation to a sublethal temperature and with simultaneous exposure to hypersaline media, was examined. Embryos of Fucus vesiculosus L. (mid-intertidal zone) were less tolerant than embryos of Fucus spiralis L. (upper intertidal zone); without acclimation and with a growth temperature of 14°C, about half of the embryos survived 3 h exposure to 33°C in F. vesiculosus and of 35°C in F. spiralis. Conditions experienced by parental thalli (4°C versus 14°C storage) significantly affected the heat tolerance of embryos grown for 24 h post-fertilization at 14°C in F. vesiculosus, a result that is important for biologists using fucoid algae as model systems. Acclimation to a sublethal temperature (29°C) or exposure to the LT50 (33°C, F. vesiculosus; 35°C, F. spiralis) in 100 psu seawater (2850 mmol kg–1 osmolality) resulted in 30–50% higher levels of embryonic survival. Higher levels of HSP60s were found in embryos exposed to 29–33°C than to 14°C; lower levels of HSP60s were present in embryos exposed to the LT50 under hypersaline conditions than in normal seawater. Contemporaneous studies in 1995–1996 of substratum temperature and desiccation levels were made at Schoodic Point, Maine (USA) underneath F. spiralis and F. vesiculosus canopies and in Semibalanus balanoides patches. This study extends the bioindicator utility of heat-shock proteins in studies of intertidal organisms and demonstrates the importance of integrated stress responses in survival of a single stress factor (e.g. temperature).Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

15.
Production rates, chlorophyll concentrations and general composition of periphytic diatom communities growing on glass slides were studied in relation to environmental parameters during one seasonal cycle in the Bay of Paranaguá, southern Brazil. Slides were routinely submersed at 1, 2 and 3 m depth and recovered weekly for microscopic examinations, analyses of chlorophyll, cell counts and in situ photosynthetic incubations using the Winkler titration method. Water samples were also collected at surface and bottom layers for determinations of temperature, salinity, nutrients and chlorophyll in the water. The periphytic community was mainly formed by epipelic and epipsammic species, dominated by Navicula phyllepta, Cylindrotheca closterium, Navicula spp. and Amphora sp. Weekly chlorophyll a and cell accumulations on slides varied from <1–32 mg m−2 and up to 31 × 108 cells m−2, respectively. Photosynthetic rates varied from <1 to 35 mg oxygen mg chlorophyll a −1 h−1, with higher values in summer. Daily production varied from 5 to 3,600 mg oxygen m−2 day−1 (<0.01–1.4 g carbon m−2 day−1). Multiple regression analysis revealed that vertical differences in light conditions and grazing pressure jointly affected the influence of temperature on the seasonal patterns of cell densities and chlorophyll concentrations according to depth. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

16.
The isopod Munnopsurus atlanticus occupies bathyal depths in both the Bay of Biscay (NE Atlantic; between 383 and 1022 m) and in the Catalan Sea (Northwestern Mediterranean; between 389 and 1859 m). The species was dominant in both assemblages, reaching bathymetric peaks of abundance on the upper part of the continental slope (400 m depth) in the Bay of Biscay and at ˜600 m in the Catalan Sea. Both the Atlantic and the Mediterranean populations are bivoltines. Demographic analysis of the Bay of Biscay population revealed the production of two generations per year with different potential longevity (5 mo for G1 and 11 mo for G2). The mean cohort-production interval (CPI) was estimated at 8 mo, and results of the demographic analysis were also used to estimate production for the Catalan Sea populations. Mean annual density (D) and biomass (B) were higher in the Bay of Biscay (D = 356.7 individuals 100 m−2; B = 0.803 mg dry wt m−2 yr−1) than in the Mediterranean (D = 16.3 individuals 100 m−2; B = 0.078 mg dry wt m−2 yr−1). Also, mean annual production was an order of magnitude higher in the Atlantic (between 4.063 and 4.812 mg dry wt 100 m−2 yr−1 depending on the method used) than in the Catalan Sea (between 0.346 and 0.519 mg dry wt 100 m−2 yr−1). M. atlanticus feeds on a wide variety of benthic and pelagic food sources. In both study areas, phytodetritus was not important in the diet of M. atlanticus. In contrast, gut-content data suggested an indirect coupling with phytoplankton production in both areas via foraminiferans. The life history and the recorded production are considered in respect to both the dynamics and levels of primary production and the total mass flux in the respective study areas. Differences in the secondary production of both populations seemed to be more consistently explained by differences in total mass flux than by differences in the primary production levels; this is also consistent with the variety of food sources exploited by M. atlanticus. Received: 22 February 1999 / Accepted: 3 February 2000  相似文献   

17.
We demonstrated that environmentally relevant levels of UVA and UVB can reduce sperm motility (UVA: by 38–58%; UVB: by 42–85%; P < 0.05) and subsequently fertilisation success (UVA: by 38–72%; UVB: by 91–98%; P < 0.05) of urchins (Anthocidaris crassispina) in a dose-dependent manner, implicating that recruitment of urchin populations might be reduced by UVR (ultraviolet radiation) prevailing in their natural habitats. Concomitantly, reactive oxygen species (ROS) production was enhanced by UVA and UVB in a dose-dependent manner (UVA: by 1.3-fold; UVB: by 6.6–7.3-fold; P < 0.05), and the increase in ROS resulted in an increase in lipid peroxidation (LPO) in urchin sperm (UVA: by 4.2–7.2-fold; UVB: by 2.3–2.7-fold; P < 0.05). This study demonstrated that ROS production and oxidative damages enhanced by UVR may account for the observed declines in sperm motility and fertilisation, and suggests that levels of UVR prevailing in the environment may pose a significant threat to the reproductive success of natural populations of urchins spawning in shallow waters.  相似文献   

18.
In situ measurements of seagrass photosynthesis in relation to inorganic carbon (Ci) availability, increased pH and an inhibitor of extracellular carbonic anhydrase were made using an underwater pulse amplitude modulated (PAM) fluorometer. By combining the instrument with a specially designed Perspex chamber, we were able to alter the water surrounding a leaf without removing it from the growing plant. Responses to Ci within the chamber showed that subtidal plants of the seagrasses Cymodocea serrulata and Halophila ovalis had photosynthetic rates that were limited by the ambient Ci concentration depending on the irradiance that was available during short-term photosynthesis–irradiance trials. Relative electron transport rates (RETRs) at light saturation (up to 500 μ mol photons m−2 s−1) increased by 66–100% when the Ci concentration was increased from ca. 2.2 to 6.2 mM. On the other hand, intertidal plants of the same species exhibited a much lesser limitation of photosynthesis by Ci at any irradiance (up to 1500 μ mol photons m−2 s−1). Both species were able to use HCO 3 efficiently, and there was stronger evidence for direct uptake of HCO 3 rather than extracellular dehydration of HCO 3 to CO2 prior to Ci uptake. Subtidally, H. ovalis and C. serrulata grew to 10 and 12 m, respectively, where ambient irradiances were approximately 16 and 11% of those at the surface. Maximum RETRs (at light saturation) were lower for these deep-growing plants than for the intertidally growing ones. For both species, the onset of light saturation of photosynthesis (E k) occurred at approximately 100 μ mol photons m−2 s−1 for the deep water populations, which was four and two times lower than for the shallow populations of C. serrulata and H. ovalis, respectively. This, and the differences in maximal photosynthetic rates (RETR max), reflects an acclimation of the deep-growing populations to the lower light environment. The results presented here show that photosynthesis, as measured in situ, was limited by the availability of Ci for the deeper growing plants in Zanzibar, while the intertidally growing plants photosynthesised at close to Ci saturation. The latter result is contrary to previous conclusions regarding Ci limitations for these intertidal plants, and, in general, our findings highlight the need for performing similar experiments in situ rather than under laboratory conditions. Received: 4 April 2000 / Accepted: 31 August 2000  相似文献   

19.
 The physico-chemical microenvironment of larger benthic foraminifera was studied with microsensors for O2, CO2, pH, Ca2+ and scalar irradiance. Under saturating light conditions, the photosynthetic activity of the endosymbiotic algae increased the O2 up to 183% air saturation and a pH of up to 8.6 was measured at the foraminiferal shell surface. The photosynthetic CO2 fixation decreased the CO2 at the shell down to 4.7 μM. In the dark, the respiration of host and symbionts decreased the O2 level to 91% air saturation and the CO2 concentration reached up to 12 μM. pH was lowered relative to the ambient seawater pH of 8.2. The endosymbionts responded immediately to changing light conditions, resulting in dynamic changes of O2, CO2 and pH at the foraminiferal shell surface during experimentally imposed light–dark cycles. The dynamic concentration changes demonstrated for the first time a fast exchange of metabolic gases through the perforate, hyaline shell of Amphistegina lobifera. A diffusive boundary layer (DBL) limited the solute exchange between the foraminifera and the surrounding water. The DBL reached a thickness of 400–700 μm in stagnant water and was reduced to 100–300 μm under flow conditions. Gross photosynthesis rates were significantly higher under flow conditions (4.7 nmol O2 cm−3 s−1) than in stagnant water (1.6 nmol O2 cm −3 s−1), whereas net photosynthesis rates were unaffected by flow conditions. The Ca2+ microprofiles demonstrated a spatial variation in sites of calcium uptake over the foraminiferal shells. Ca2+ gradients at the shell surface showed total Ca2+ uptake rates of 0.6 to 4.2 nmol cm−2 h−1 in A. lobifera and 1.7 to 3.6 nmol cm−2 h−1 in Marginopora vertebralis. The scattering and reflection of the foraminiferal calcite shell increased the scalar irradiance at the surface up to 205% of the incident irradiance. Transmittance measurements across the calcite shell suggest that the symbionts are shielded from higher light levels, receiving approximately 30% of the incident light for photosynthesis. Received: 6 July 1999 / Accepted: 28 April 2000  相似文献   

20.
 Population genetic theory predicts that marine animal species with planktonic larvae will have less genetic structure than those with direct development. We compared the genetic structure of four species of littorinid snails – two with planktonic egg capsules that hatch as planktonic larvae and two with benthic egg masses that hatch as crawl-away juveniles. We used DNA sequencing and single stranded conformational polymorphism (SSCP) to assess sequence variation in a 480 bp fragment of the mitochondrial cytochrome b gene and then used an analysis of molecular variance (AMOVA) to estimate Φst for populations from the northeastern Pacific coast. One of the two direct-developing species, Littorina subrotundata, had a moderate amount of population structure (Φst=0.209) as expected but the other direct-developing species, L. sitkana, was nearly fixed for a single haplotype that made it impossible to precisely estimate Φst. One of the two planktonic-developing species, L. scutulata, did not show any significant population structure (Φst=0.004). In contrast to our expectations, the other planktonic-developing species, L. plena, showed some weak but statistically significant population structure (Φst=0.052). We discuss how differences in population genetic structure between species with the same type of development may reflect differences in their historical demography. Received: 22 December 1999 / Accepted: 24 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号